
MIDAS
Users Guide

Volume A

System

MIDAS Release 92NOV

Image Processing Group
European Southern Observatory

Karl–Schwarzschild–Straße 2
D–8046 Garching bei München
Federal Republic of Germany

Section Title Date

Chapter 1 Introduction 1-November-1991
Chapter 2 Cook-Book 1-November-1991
Chapter 3 Monitor & Syntax 1-November-1992
Chapter 4 Data Structures NA
Chapter 5 Table File System 1-November-1992
Chapter 6 Graphics & Image Display 1-November-1992
Chapter 7 Data Exchange Format 1-November-1991
Chapter 8 Fitting of Data 15-January-1988

Appendix A Detailed Command Description 1-November-1992
Appendix B Command Summary 1-November-1992
Appendix C Acknowledgements 1-November-1992
Appendix D Site Specific Implementation 1-November-1992
Appendix E Release Notes 1-November-1992

Contents

1 Introduction 1–1
1.1 How to use the MIDAS Manual . 1–1

1.1.1 New Users . 1–2
1.1.2 Site Specific Features . 1–2

1.2 General Concept of MIDAS . 1–2
1.3 Distribution Policy . 1–3
1.4 Support . 1–3
1.5 Requirements for Running MIDAS . 1–4

1.5.1 Hardware . 1–4
1.5.2 Software . 1–5

1.6 Other Relevant Documents . 1–5

2 Cook-Book 2–1
2.1 Terminology . 2–1
2.2 Commands . 2–2
2.3 Getting Started . 2–3

2.3.1 Simple MIDAS Session . 2–3
2.3.2 Exit and Logout . 2–10
2.3.3 Executing System Commands . 2–11
2.3.4 Some Useful Commands . 2–11

3 Monitor and Command Language 3–1
3.1 Starting the MIDAS Monitor . 3–2
3.2 MIDAS And the Host Operating System . 3–3
3.3 MIDAS Data Structures . 3–4

3.3.1 Specifying a Descriptor . 3–5
3.3.2 Specifying Keywords . 3–7
3.3.3 Specifying Elements in a Table . 3–7
3.3.4 Specifying Pixels in an Image . 3–8

3.4 Command Syntax . 3–8
3.4.1 Command Recalling . 3–10
3.4.2 Command Line Editing . 3–11
3.4.3 Command Line Suspension . 3–12

iii

3.4.4 On–Line Help . 3–12
3.5 Execution of Commands . 3–13
3.6 MIDAS Command Language . 3–14

3.6.1 Passing Parameters in MIDAS Procedures 3–17
3.6.2 Symbol Substitution in Command Procedures 3–21
3.6.3 DO Loops . 3–23
3.6.4 Local Keys . 3–24
3.6.5 Conditional Statements, Branching 3–25
3.6.6 Special Functions . 3–29
3.6.7 Interrupting Procedures . 3–31
3.6.8 Entry points . 3–32

3.7 Context Levels . 3–33
3.8 Running a Program within MIDAS . 3–34

3.8.1 Debugging of Procedures and Modules 3–35
3.9 Catalogs in MIDAS . 3–36

3.9.1 Using Catalogs in MIDAS Procedures 3–37
3.10 Adapting MIDAS to your personal needs . 3–38
3.11 MIDAS User Levels . 3–39

4 Data Structures 4–1

5 Table File System 5–1
5.1 Tables in Image Processing . 5–1
5.2 Structure of Tables . 5–2
5.3 Input/Output of Tables . 5–3
5.4 Management of Tables . 5–3

5.4.1 Definition of Tables . 5–3
5.4.2 Displaying Tables . 5–4
5.4.3 Modification of Tables . 5–4
5.4.4 Interactive Editing of Tables . 5–5

5.5 Operations on Tables . 5–8
5.6 Command Overview . 5–8

5.6.1 List of Commands . 5–9
5.7 Table Format Files . 5–9
5.8 Example . 5–12

6 Graphic and Image Display 6–1
6.1 Graphic Facilities . 6–1

6.1.1 Introduction . 6–1
6.1.2 Graphic devices . 6–2
6.1.3 General Commands . 6–2
6.1.4 Main Plot Commands . 6–9
6.1.5 Graphic Cursor Commands . 6–11
6.1.6 Handling of Plotfiles . 6–11

6.1.7 Encapsulated PostScript Files . 6–13
6.1.8 Examples . 6–14
6.1.9 Command Summary . 6–14

6.2 Image Displays . 6–17
6.2.1 IP8500 display . 6–17
6.2.2 XWindow display . 6–22
6.2.3 Image Hardcopy . 6–25

7 Data Exchange Format 7–1
7.1 Exchange Formats . 7–1

7.1.1 FITS Format . 7–2
7.1.2 MIDAS Implementation of FITS . 7–2

7.2 IHAP Format . 7–2
7.2.1 MIDAS Implementation of IHAP . 7–3

7.3 How to Read/Write Tapes . 7–3
7.3.1 Reading in Data Tapes . 7–3
7.3.2 Writing Out Data Tapes . 7–4

8 Fitting of Data 8–1
8.1 Outline of the Available Methods . 8–1

8.1.1 The Newton–Raphson Method. 8–3
8.1.2 The Modified Gauss–Newton Method. 8–3
8.1.3 The Quasi–Newton Method. 8–4
8.1.4 The Corrected Gauss–Newton No Derivatives. 8–5

8.2 Function Specification . 8–5
8.3 External Functions . 8–6
8.4 The Fitting Process. 8–9
8.5 Outputs . 8–10
8.6 Tutorial . 8–11
8.7 Command Summary . 8–12
8.8 Basic Functions . 8–12

8.8.1 Polynomials (1D and 2D) . 8–12
8.8.2 Logarithmic and Exponential Function 8–12
8.8.3 Trigonometric Functions . 8–13
8.8.4 Sinc and Sinc Square . 8–13
8.8.5 Distributions . 8–14

8.9 References . 8–14

A Detailed Command Description A–1

B Acknowledgements B–1
B.1 General . B–1
B.2 Packages and Commands . B–1
B.3 Libraries . B–2

B.3.1 AGL . B–2
B.3.2 IDI . B–2

B.4 Manual . B–2

C Site Specific Implementation C–1
C.1 Hardware Setup . C–1

C.1.1 UNIX Workstations . C–1
C.1.2 Printer and Plotter Queues . C–1
C.1.3 X11 Window systems . C–2
C.1.4 Film Hardcopy . C–2
C.1.5 Tape I/O . C–3

C.2 Operating Systems . C–6
C.2.1 Login Procedures . C–6
C.2.2 Differencies between VAX/VMS - UNIX C–6

C.3 Data Format Compatibility . C–6

D Release Notes D–1
D.1 Current Status . D–1
D.2 Installation . D–1
D.3 Software Modifications . D–2
D.4 Manual Updates . D–3
D.5 Use of NAG Library . D–3

List of Figures

5.1 Layout of the Table Editor Left Keypad . 5–7
5.2 Layout of the Table Editor Right Keypad 5–7

vii

List of Tables

2.1 List of Tutorials . 2–11
2.2 List of Often Used Commands . 2–12

3.1 Help Features . 3–13
3.2 Special Functions available for operations on keys 3–30

5.1 Conversion between ASCII Files and MIDAS Tables 5–3
5.2 Commands to Define Tables . 5–4
5.3 Commands to Display a Table . 5–4
5.4 Commands to Modify a Table . 5–5
5.5 Commands to Transfer Table Data . 5–5
5.6 Table Editor COMMAND Functions . 5–6
5.7 Layout of the Table Editor Central Keypad 5–6
5.8 Operations on Table Data . 5–9
5.9 Table Commands . 5–10

6.1 Supported Devices . 6–3
6.2 SET/GRAPHIC Options . 6–5
6.3 Meta Character in AGL and MIDAS . 6–8
6.4 TEX-like Characters for text strings in MIDAS Graphics 6–10
6.5 Graphic Commands . 6–16

8.1 Basic Fit Functions . 8–6
8.2 Fitting Commands . 8–13

C.1 Printer and Plot Queues . C–2
C.2 Differencies between UNIX - VAX/VMS . C–7

viii

Chapter 1

Introduction

ESO-MIDAS 1is the acronym for the European Southern Observatory - Munich Image
Data Analysis System which is developed and maintained by the European Southern
Observatory. The official name, ESO-MIDAS, is a registered trademark. In this manual
the name MIDAS is used as an abbreviation of ESO-MIDAS. The MIDAS system provides
general tools for image processing and data reduction with emphasis on astronomical
applications including special reduction packages for ESO instruments at La Silla. The
system is available for both VAX/VMS and UNIX systems.

A large number of contributions have been made to MIDAS by people inside and
outside ESO. We greatly appreciate and acknowledge these efforts. A full list of acknowl-
edgements can be found in Appendix B.

This manual gives the necessary information to do useful data reduction with the
system, whereas a detailed technical description of the design and software interfaces can
be found in other documents (see Section 1.6). These documents also describe how users
can write and add their own application programs to the system.

1.1 How to use the MIDAS Manual

This document is intended to be a description of how to use the various facilities available
in the MIDAS system. The manual consists of two volumes:

Volume A: describes the basic MIDAS system with all general purpose facilities such
as MIDAS Control Language, all available commands, data input/output (including
plotting and image display), table system (MIDAS Data Base). Site specific features
are given in an appendix.

Volume B: describes how to use the MIDAS system for astronomical data reduction.
Application packages for special types of data or reductions (e.g. long slit and
echelle spectra, object search, or crowded field photometry) are discussed assuming
intensity calibrated data. A set of appendices gives a detailed description of the
reduction of raw data from ESO instruments.

1Trade-mark of the European Southern Observatory

1–1

1–2 CHAPTER 1. INTRODUCTION

It is intended that users will mainly need Volume A for general reference. For specific
reduction of raw data and usage of special astronomical packages, Volume B will be more
informative.

1.1.1 New Users

To be able to use MIDAS, it is a great advantage to have some basic knowledge of computer
systems such as how to login, use of the file editor and simple system commands. Such
instructions can normally be found in local system documentation or in Appendix C of this
volume. After having acquired this knowledge, new users should read Chapter 2 carefully.
This will give a basic introduction to the MIDAS system with some examples.

1.1.2 Site Specific Features

MIDAS is used at many different sites on a large variety of configurations. The main part
of this manual does not refer to special configurations or hardware devices. Site specific
implementations and details of the local installation can be found in Appendix C.

1.2 General Concept of MIDAS

The MIDAS system is built along lines which should allow easy integration of complex
analysis algorithms as well as allowing greater flexibility in interactive use and in the cre-
ation of user specific procedures from the basic building blocks. The first design proposal
for MIDAS, made late 1980, used some ideas from the UK STARLINK project for the
software interface definitions. The present version which became available in 1984 follows
a similar philosophy in its application program interfaces, but has been expanded to the
new Standard Interfaces which have a broader base than previously.

MIDAS has benefitted greatly from the experience gained at ESO using the Hewlett-
Packard based image processing system IHAP (see F. Middelburg, IHAP Manual, ESO
1985). Not only have many of the internal design features such as “world coordinates”
been incorporated, but also the command language has been designed in such a way that
it is similar to the basic philosophy of IHAP.

The MIDAS system can be run in both an interactive and a batch mode. In addition,
the interactive user will be able to create batch jobs which will run in parallel with the
interactive work.

MIDAS is based on two sets of general interfaces for application programs to data
structures, namely: a) the “Standard Interfaces” for general I/O and image access, and b)
the “Table Interfaces” for access to table structures. These interfaces allow easy integration
of application programs into MIDAS. To provide a portable system a layer of OS-routines
have been used to shield MIDAS from the local operating system. These routines may
only be used at lowest levels and are not available for normal applications.

To facilitate easy implementation of different graphic and display devices, MIDAS
has adopted a set of device independent interfaces for plotting and image display. All
plotting routines in MIDAS are based on the ASTRONET Graphic Library, developed

1–November–1991

1.3. DISTRIBUTION POLICY 1–3

and maintained by the italian ASTRONET. Further, the image display applications are
using the Image Display Interface routines defined in collaboration with ST ScI, UK
STARLINK, KPNO and Trieste Observatory.

1.3 Distribution Policy

The MIDAS system is available, free of charge, to all non–profit research institutes, whereas
other organisations or companies may be charged a nominal fee to cover distribution.
Institutes interested in using MIDAS must sign a User Agreement before distribution
material can be shipped. The necessary forms can be obtained by contacting the Image
Processing Group at ESO/Munich. MIDAS is distributed in source code copyrighted by
ESO with all rights reserved. Institutes receiving the MIDAS system are not allowed to
redistribute it to other sites without explicit written permission from ESO. The use of
the MIDAS system for data reduction should be properly acknowledged in papers and
publications. It is recommended to refer to the specific MIDAS version used, e.g. 91NOV,
in the acknowledgement.

The availability of new releases is announced through electronic mail. Requests can
be submitted either on special MIDAS Request Forms or through e-mail quoting the user
agreement number. Currently, MIDAS has one yearly release in November (e.g. the release
in 1992 is will be named 92NOV). The current system at ESO/Munich is frozen several
months prior to the official release. The official release is based on this version, which
is extensively tested both at ESO and at a number of β-test sites. Problems detected
during these tests are corrected in the official release version which is then given free for
distribution. The release is is available on a wide range of tape media and additionally, it
can be obtained through an ftp account.

Updates of the manual and other documentation take somewhat longer to prepare and
print and will be sent to all sites which receive a new MIDAS release. Updates are normally
not sent to individual users. Copies and updates of documentation can be obtained by
writing to the Image Processing Group at ESO/Munich.

1.4 Support

The MIDAS system is supported in a variety of ways. If people encounter problems which
cannot be solved locally (e.g. through the manual) they can use the MIDAS Hot–Line
service. This service will provide answers to MIDAS related questions received through
the following list of electronic mail and telex addresses:

• earn/bitnet: midas@dgaeso51

• uucp: midas@eso.uucp

• internet: midas@eso.org

• span: eso::midas

1–November–1991

1–4 CHAPTER 1. INTRODUCTION

• Telefax: +49 89 32006480 (attn.: MIDAS HOT-LINE)

• Telex: 528 282 22 eo d (attn.: MIDAS HOT-LINE)

Requests and questions are acknowledged when received and processed as soon as pos-
sible, normally within a few days. Also, users are strongly encouraged to send suggestions
and comments via the MIDAS Hot–Line.

In urgent cases, users can use a special MIDAS Support telephone service at ESO on
the number +49-89-32006-456. This line is connected to the MIDAS Users Support which
is able directly to answer questions concerning MIDAS or investigate the problem in more
complicated cases. Although this telephone service is available we prefer that questions
or requests are submitted in writting via the MIDAS Hot–Line. This makes it easier
for us to process the requests properly. A database with problem reports and answers
is available for interogation using the STARCAT utility at ESO. General information
concerning the MIDAS system should be addressed to Image Processing Group, European
Southern Observatory, Karl-Schwarzschild-Straße 2, D-8046 Garching bei München (attn:
Resy de Ruijsscher).

Besides these support services, MIDAS User meetings are arranged to discuss status
and developments inside and outside of ESO, normally in connection with the ESO/ST-
ECF Data Analysis Workshop. Further, a newsletter, the ESO-MIDAS Courier, is issued
twice a year.

1.5 Requirements for Running MIDAS

MIDAS can run on computers with either VAX/VMS2 or UNIX3 operating systems. De-
tails of hardware and software requirements for MIDAS are listed below.

1.5.1 Hardware

• Computer system: any system which can run either VAX/VMS or UNIX operating
systems. MIDAS implementations have been made on a large number of systems
from vendors e.g. VAX stations, DEC stations, SUN SPAECstations, HP 700 series,
IBM RS/6000 systems. The availability for a specific system can be checked by
asking the MIDAS Hot–line.

• Memory: depending on the number of users of the systems but normally at least 8
Mbyte. A physical memory that is too small may significantly reduce the perfor-
mance due to swapping of data to disk.

• Disk: the full MIDAS system requires of the order of 100 Mbyte of disk storage
depending on the type of CPU. During installation an extra 10 Mbyte should be
available for temporary files such as object code. The size of the system can be

2Trademarks of Digital Equipment Corporation
3Trademark of AT& T

1–November–1991

1.6. OTHER RELEVANT DOCUMENTS 1–5

reduced in three ways: a) source files can be deleted after implementation, b) help–
files can be removed if on–line help is not required, and c) parts of the system which
are not used (e.g. crowded field photometry or echelle packages) need not be loaded.

A typical disk size for a single user system is approximately 200 Mbyte assuming 60
Mbyte for the operation system, 80 Mbyte for MIDAS, and 50-100 Mbyte for a user
with 2–dimensional data.

• Terminals: any alpha-numeric terminal can be used. MIDAS can either work in a
simple line-by-line mode or provide special features such as line editing by using a
terminal definition file for special terminal features.

• Graphics: the graphics software of MIDAS uses the device independent plotting
library AGL 4 made by the italian ASTRONET. Drivers for a significant number of
different devices are available e.g. Tektronix 4010/4015, X Window System, version
11 and PostScript (see a complete list in Chapter 6). It is possible to write drivers
for devices for which none exist (see the AGL driver manual).

• Image displays: MIDAS uses the Image Display Interfaces which provides a general
interface to image display devices. IDI-routines are available for DeAnza IP 8500
and X Window. X Window System, version 11, will be supported as the general
interface to workstations. Other devices can be used if an appropriate set of IDI-
routines are written. A list of currently available IDI-routines can be obtained from
the Image Processing Group.

1.5.2 Software

• System: VAX/VMS or UNIX operating systems.

• Compilers: FORTRAN-77 and C compilers.

• Libraries: AGL is used for all plotting in MIDAS. This library is normally available
on the release media but can also be obtained from the Italian ASTRONET (free of
charge for non-profit research institutes).

NAG5 is used in a few packages such as fitting. It is under license and can be
purchased from the Numerical Algorithms Group. MIDAS can be installed without
this library in which case some commands will be unavailable.

1.6 Other Relevant Documents

There are several other documents relevant to the MIDAS system. General descriptions
of the system can be found in the following references:

• Banse, K., Crane, P. Ounnas, C., Ponz, D., 1983 : ‘MIDAS’ in Proc. of DECUS,
Zurich, p.87

4Astronet Graphical Library made by the Italian ASTRONET
5NAG made by Numerical Algorithms Group

1–November–1991

1–6 CHAPTER 1. INTRODUCTION

• Grosbøl, P., Ponz, D. , 1985 : ‘The MIDAS Table File System’, Mem.S.A.It. 56,
p.429

• Banse, K., Grosbøl, P., Ponz, D., Ounnas, C., Warmels, R., ‘The MIDAS Image
Processing System in Instrumentation for Ground Based Astronomy: Present and
Future, L.B. Robinson, ed., New York: Springer Verlag, p.431.

For general bibliographic reference to the MIDAS system (VAX/VMS version), the first
reference in the above list should be used.

Detailed technical information of software interfaces and designs used in MIDAS is
given in the following documentation:

• MIDAS Environment

• MIDAS IDI–routines

• AGL Reference Manual

Users who want to write their own application programs for MIDAS should read the
MIDAS Environment document which gives the relevant information and examples.

For users who have to work with both the IHAP and MIDAS systems a cross- reference
document has been made for the most commonly used commands:

• MIDAS-IHAP/IHAP-MIDAS Cross-Reference

The above documents can be obtained by contacting the Image Processing Group (e.g.
via the HOT-LINE).

1–November–1991

Chapter 2

Cook-Book

This chapter outlines the necessary information to get started with the MIDAS system.
Further details can be found in the appropriate sections of the following chapters.

The essential steps are:

• To login to the computer you want to use.

• Start up the MIDAS monitor.

• Load some data from tape into your disk space.

• Execute the MIDAS commands you want.

• Save processed data on tape.

• Exit from the MIDAS monitor and logout.

These steps are outlined in the following sections.

2.1 Terminology

The following explain various terms used in this manual.

Keywords — global variables in the MIDAS monitor. They can be single numbers or
characters or one dimensional arrays used to store input, output, or control information
for MIDAS commands.

Frames — arrays of numbers representing data values with uniform sampling. They are
used for storage of images or spectra.

Images — used interchangeably with frames.

Descriptors — variables associated to frames, tables or masks describing the contents in
them. They are basically the same as keywords just associated to data files instead of
the monitor. These descriptors have names like NAXIS (the dimension of the image
array), CUNIT (the units of the axes), etc.

2–1

2–2 CHAPTER 2. COOK-BOOK

Tables — two dimensional arrays organised with rows and columns. They are used for
storage of heterogeneous data contrary to frames and masks which store homogeneous
data. They are typically used for saving lists of e.g. stellar positions and magnitudes.
See Chapter 5 for a full description of the table facilities. Many commands output their
results or take their input from tables. They constitute a simple data base system for
MIDAS.

Catalogues — a list of frames, tables, or masks which can be used for input to various
commands or merely for reference.

Procedures — These are lists of MIDAS commands stored in a file of type filename.prg
and which can be executed by typing @@ filename. See Chapter 3 for further details.

Fit file — a file that contains the function and parameter values for use in conjunction
with the fitting commands described in Chapter 8.

2.2 Commands

MIDAS is a command driven system in which the user enters commands followed by
parameters. This implies that the user must know a few commands and their structure in
order to make effective use of the system. Since most users cannot keep all the commands
and their parameters at their finger tips, an extensive on–line help facility has been created
as well as a printed version of the help text (see the Appendices).

A MIDAS command has the following structure:

COMMAND/QUALIFIER par1 par2 . . . par8

where par1 is the first parameter and so on. The important points are:

• Command and qualifier are separated by a / (slash).

• The command/qualifier and the parameters are separated by a space.

• Most commands have qualifiers.

• A parameter may contain several sub-parameters which are separated by commas.

• In most cases if the parameters are not specified, the system makes sensible defaults,
but the user should not always trust these default values to be those he might have
chosen.

• Keep these rules in mind, otherwise you will confuse the command.

MIDAS commands divide themselves into three categories:

• MIDAS primitive commands

• MIDAS application commands

1–November–1988

2.3. GETTING STARTED 2–3

• procedure control commands

The MIDAS commands are listed in alphabetical order and explained in detail in Ap-
pendix A. The application commands are developed for special purposes such as CCD or
CASPEC reductions. They are described and listed in the various sections related to par-
ticular applications. For reductions of data you should refer to Volume B of this manual.
The procedure control commands are described in Chapter 3.

2.3 Getting Started

The first thing to do is to login to the computer which you would like to use for your data
reductions. The detailed procedure for getting permission to use the computer and getting
allocated disk space for your data reductions can be found in Appendix C. Assuming that
you have succeeded in logging into the computer, the following subsections describe typical
use of MIDAS.

When you have logged in you should check that you have sufficient disk space in the
directory in which you are working. For reductions of images an area of the order of 50
Mbytes would be adequate while for spectra reductions and analysis of final results less
space is needed. Now you are ready to start the MIDAS system:

• Type INMIDAS on a VMS system or $inmidas on a UNIX system. This will initiate
the MIDAS environment and the terminal should respond with:

Midas 001>

• The available commands can be listed out by typing HELP. This only gives you
the names of the commands presently available in the system. A summary and a
subject grouped listing of the commands you will find in Appendix ??. You can
find the full explanation of the individual commands in Appendix A. A command
can have several qualifiers which will change the mode of execution of the command
e.g STATISTICS has qualifiers IMAGE, TABLE and POISSON. It is possible , typing
HELP command, to get a display of all the command/qualifier combinations available
for the given command. Detailed information about a specific command/qualifier
combination can be obtained by typing HELP command/qualifier.

• In some installations a number of tutorial commands are available. (see Table 2.1)
They provide an illustration of different parts of the system.

2.3.1 Simple MIDAS Session

This section gives two examples of simple MIDAS sessions. The first one reads some
frames from a magnetic tape, displays them on a monitor and performs some simple
operations. The second one creates MIDAS tables and performs some simple operations.
In the following examples, user input is written in bold face type while comments, (after
an exclamation mark) are written in normal roman font.

1–November–1988

2–4 CHAPTER 2. COOK-BOOK

$ inmidas
Midas 001> HELP INTAPE !get help for tape input
Midas 002> INTAPE * x TAPE1 FNN !lists headers of all files

!from tape mounted on TAPE1
Midas 003> INTAPE 2,16-17,31-33,52 CCD TAPE1 !read files from TAPE1

Image ccd0002 : FF D V 20S , naxis: 2, pixels: 337, 520
Image ccd0016 : DK BIAS 1S , naxis: 2, pixels: 337, 520
Image ccd0017 : DK BIAS 1S , naxis: 2, pixels: 337, 520
Image ccd0031 : DK 60S , naxis: 2, pixels: 337, 520
Image ccd0032 : DK 60S , naxis: 2, pixels: 337, 520
Image ccd0033 : DK 60S , naxis: 2, pixels: 337, 520
Image ccd0052 : A0532-527 V 300 , naxis: 2, pixels: 337, 520

Midas 004> INTAPE 78 ccd image.fits !read fits file from disk

Image ccd0078 : A1029-459 V 40S , naxis: 2, pixels: 337, 520

Midas 005> CREATE/ICAT !create a catalogue of images
Image catalog icatalog.cat with 8 entries created...
Midas 006> SET/ICAT !enable catalogue
Midas 007> READ/ICAT !list the catalogue out
Image Catalog: icatalog.cat

No Name Ident Naxis Npix(1,2)
#0001 ccd0002.bdf FF D V 20S 2 337 520
#0002 ccd0016.bdf DK BIAS 1S 2 337 520
#0003 ccd0017.bdf DK BIAS 1S 2 337 520
#0004 ccd0031.bdf DK 60S 2 337 520
#0005 ccd0032.bdf DK 60S 2 337 520
#0006 ccd0033.bdf DK 60S 2 337 520
#0007 ccd0052.bdf A0532-527 V 300 2 337 520
#0008 ccd0078.bdf A1029-459 V 40S 2 337 520

Midas 008> STAT/IMA ccd0016 !compute statistics for this frame

frame: ccd0016 (data = R4)
complete area of frame
minimum, maximum: 184.0000 16383.00
at (215, 2),(337, 520)
mean, standard_deviation: 251.2245 880.0140
3rd + 4th moment: 0.1305419E+11 0.2137182E+15
total intensity: 0.4402457E+08
median, 1. mode: 16287.41 16287.71
total no. of bins, binsize: 256 63.52549
of pixels used = 175240 or 100.00 % of all possible pixels (= 175240)
from 1 1 to 337 520 (in pixels)

Midas 009> STAT/IMA ccd0017

frame: ccd0017 (data = R4)
complete area of frame

1–November–1988

2.3. GETTING STARTED 2–5

minimum, maximum: 187.0000 16383.00
at (113, 1),(337, 520)
mean, standard_deviation: 251.2514 880.0129
3rd + 4th moment: 0.1305419E+11 0.2137182E+15
total intensity: 0.4402929E+08
median, 1. mode: 16287.30 16287.73
total no. of bins, binsize: 256 63.51373
of pixels used = 175240 or 100.00 % of all possible pixels (= 175240)
from 1 1 to 337 520 (in pixels)

Midas 010> CREATE/DISPLAY !create a display window
Midas 011> LOAD/IMA ccd0017 !display image
Midas 012> GET/CURS !read some pixels values from the image

cursor #0
frame pixels world coords intensity
frame: ccd0017

334.0 166.0 334.000 166.000 228.000

Midas 013> EXTRACT/IMA ff = ccd0002[<,<:@330,>] !remove
!irrelevant columns

Midas 014> EXTRACT/IMA biai1 = ccd0016[<,<:@330,>]
Midas 015> EXTRACT/IMA biai2 = ccd0017[<,<:@330,>]
Midas 016> EXTRACT/IMA dk1 = ccd0031[<,<:@330,>]
Midas 017> EXTRACT/IMA dk2 = ccd0032[<,<:@330,>]
Midas 018> EXTRACT/IMA dk3 = ccd0033[<,<:@330,>]
Midas 019> EXTRACT/IMA ima1 = ccd0052[<,<:@330,>]
Midas 020> EXTRACT/IMA ima2 = ccd0078[<,<:@330,>]
Midas 021> STAT/IMA biai1

frame: biai1 (data = R4)
complete area of frame
minimum, maximum: 184.0000 497.0000
at (215, 2),(147, 408)
mean, standard_deviation: 203.2299 3.752572
3rd + 4th moment: 8402620. 0.1709546E+10
total intensity: 0.3487425E+08
median, 1. mode: 202.0980 204.2529
total no. of bins, binsize: 256 1.227451
of pixels used = 171600 or 100.00 % of all possible pixels (= 171600)
from 1 1 to 330 520 (in pixels)

Midas 022> STAT/IMA biai2

frame: biai2 (data = R4)
complete area of frame
minimum, maximum: 187.0000 613.0000
at (113, 1),(286, 473)
mean, standard_deviation: 203.2554 3.836732
3rd + 4th moment: 8406459. 0.1710918E+10
total intensity: 0.3487864E+08

1–November–1988

2–6 CHAPTER 2. COOK-BOOK

median, 1. mode: 201.6387 202.8706
total no. of bins, binsize: 256 1.670588
of pixels used = 171600 or 100.00 % of all possible pixels (= 171600)
from 1 1 to 330 520 (in pixels)

Midas 023> READ/DESCR biai1 STATISTIC !read descriptor statistic

frame: BIAI1 (data = R4)
STATISTIC :

184.0000 497.0000 203.2299 3.752572 8402620.
0.1709546E+10 202.0980 204.2529 256.0000 1.227451
0.3487425E+08

Midas 024> COMPUTE/IMA ffb = ff-203. !biais correction
Midas 025> COMPUTE/IMA dk1b = dk1-203.
Midas 026> COMPUTE/IMA dk2b = dk2-203.
Midas 027> COMPUTE/IMA dk3b = dk3-203.
Midas 028> COMPUTE/IMA ima1b = ima1-203.
Midas 029> COMPUTE/IMA ima2b = ima2-203.
Midas 030> AVERAGE/IMA dk = dk1b,dk2b,dk3b !compute an

!average of DARK frames
dk1b processed ...
dk2b processed ...
dk3b processed ...
Midas 031> COMPUTE/IMA ffd = ff-dk !dark subtraction
Midas 032> COMPUTE/IMA ima1bd = ima1b-dk
Midas 033> COMPUTE/IMA ima2bd = ima2b-dk
Midas 034> COMPUTE/IMA ima1bdf = ima1bd/ffd !flat-field the frame
Midas 035> COMPUTE/IMA ima2bdf = ima2bd/ffd
Midas 036> LOAD/IMA ima1bdf
Midas 037> READ/DESCR ima1bdf LHCUTS

frame: ima1bdf (data = R4)
LHCUTS :

0.0000000E+00 0.0000000E+00 -0.7500000E-01 1.992324 0.0000000E+00
0.0000000E+00

Midas 038> CUTS ima1bdf 0.,1.992 !modify display cuts
Midas 039> LOAD ima1bdf
Midas 040> READ/ICAT icatalog
Image Catalog: icatalog.cat

No Name Ident Naxis Npix(1,2)
#0001 ccd0002.bdf FF D V 20S 2 337 520
#0002 ccd0016.bdf DK BIAS 1S 2 337 520
#0003 ccd0017.bdf DK BIAS 1S 2 337 520
#0004 ccd0031.bdf DK 60S 2 337 520
#0005 ccd0032.bdf DK 60S 2 337 520
#0006 ccd0033.bdf DK 60S 2 337 520
#0007 ccd0052.bdf A0532-527 V 300 2 337 520
#0008 ccd0078.bdf A1029-459 V 40S 2 337 520

1–November–1988

2.3. GETTING STARTED 2–7

#0009 ff FF D V 20S 2 330 520
#0010 biai1 DK BIAS 1S 2 330 520
#0011 biai2 DK BIAS 1S 2 330 520
#0012 dk1 DK 60S 2 330 520
#0013 dk2 DK 60S 2 330 520
#0014 dk3 DK 60S 2 330 520
#0015 ima1 A0532-527 V 300 2 330 520
#0016 ima2 A1029-459 V 40S 2 330 520
#0017 ffb FF D V 20S 2 330 520
#0018 dk1b DK 60S 2 330 520
#0019 dk2b DK 60S 2 330 520
#0020 dk3b DK 60S 2 330 520
#0021 ima1b A0532-527 V 300 2 330 520
#0022 ima2b A1029-459 V 40S 2 330 520
#0023 dk average frame 2 330 520
#0024 ffd FF D V 20S 2 330 520
#0025 ima1bd A0532-527 V 300 2 330 520
#0026 ima2bd A1029-459 V 40S 2 330 520
#0027 ima1bdf A0532-527 V 300 2 330 520
#0028 ima2bdf A1029-459 V 40S 2 330 520

Midas 041> OUTTAPE icatalog,9-28 TAPE1 !save data on tape

File ff.bdf written to tape with 241 blocks
File biai1.bdf written to tape with 243 blocks
File biai2.bdf written to tape with 243 blocks
File dk1.bdf written to tape with 241 blocks
File dk2.bdf written to tape with 241 blocks
File dk3.bdf written to tape with 241 blocks
File ima1.bdf written to tape with 241 blocks
File ima2.bdf written to tape with 241 blocks
File ffb.bdf written to tape with 241 blocks
File dk1b.bdf written to tape with 241 blocks
File dk2b.bdf written to tape with 241 blocks
File dk3b.bdf written to tape with 241 blocks
File ima1b.bdf written to tape with 241 blocks
File ima2b.bdf written to tape with 241 blocks
File dk.bdf written to tape with 241 blocks
File ffd.bdf written to tape with 241 blocks
File ima1bd.bdf written to tape with 241 blocks
File ima2bd.bdf written to tape with 241 blocks
File ima1bdf.bdf written to tape with 241 blocks
File ima2bdf.bdf written to tape with 241 blocks

Midas 042> OUTTAPE icatalog,7-8 ima !save data on disk in FITS format

File ima1.bdf written to disk> ima0001.mt
File ima2.bdf written to disk> ima0002.mt

Midas 043> PRINT/LOG !print logfile on the default printer
Midas 042> BYE

1–November–1988

2–8 CHAPTER 2. COOK-BOOK

$ inmidas
Midas 001> CREATE/TABLE flux1 2 30 flux1 ! create table from ASCII file
Midas 002> SHOW/TABLE flux1 ! list table parameters

Table : flux1 [Transposed format]
No.Columns : 2 No.Rows : 30
All.Columns: 3 All.Rows : 32
Sorted by Sequence Reference : Sequence
Col.# 1:LAB001 Unit:Unitless Format:E15.6 R*4
Col.# 2:LAB002 Unit:Unitless Format:E15.6 R*4
Selection : ALL

Midas 003> READ/TABLE flux1 :LAB001 :LAB002 @1 @9
!read data from table

Table : flux1

Sequence LAB001 LAB002
-------- --------------- ---------------

1 4.71000e+03 1.12850e+04
2 4.77000e+03 1.08300e+04
3 5.05000e+03 8.77000e+03
4 5.09000e+03 8.55000e+03
5 5.12000e+03 8.34000e+03
6 5.19000e+03 7.93000e+03
7 5.23500e+03 7.73500e+03
8 5.26500e+03 7.55000e+03
9 5.39000e+03 7.00500e+03

-------- --------------- ---------------

Midas 004> NAME/COLUMN flux1 :LAB001 "(sec)" F6.0 !change
! format and define unit

Midas 005> NAME/COLUMN flux1 :LAB002 "(erg/sec)" F6.0
Midas 006> READ/DESCR flux1.tbl HISTORY

HISTORY :
CREA/TABL flux1 2 30 flux1 NULL TRAN
NAME/COLU flux1 :LAB001 "(sec)" F6.0
NAME/COLU flux1 :LAB002 "(erg/sec)" F6.0

Midas 007> STAT/TABLE flux1 :LAB001 !compute statistics of
!one of the column

Table : flux1
Column # 1 Label :LAB001 Type :R*4
Total no. of entries : 30, selected no. of entries : 30
Miminum value : 0.47100E+04, Maximum value: 0.96800E+04
Mean value : 0.66437E+04, Standard dev.: 0.15539E+04

Midas 008> $more flux2.fmt

1–November–1988

2.3. GETTING STARTED 2–9

!
! format file flux2.fmt
!
DEFINE/FIELD 1 6 R F6.0 :LAB001
DEFINE/FIELD 9 13 R F6.0 :LAB002
END

Midas 009> CREATE/TABLE flux2 2 8 flux2 flux2
Midas 010> READ/TABLE flux2

Table : flux2

Sequence LAB001 LAB002
-------- ------ ------

1 9705 2750
2 9930 2700
3 10130 2655
4 10150 2650
5 10520 2580
6 10740 2540
7 11040 2485
8 11570 2410

-------- ------ ------

Midas 011> MERGE/TABLE flux1 flux2 flux !merge of two tables
Midas 012> SHOW/TABLE flux

Table : flux [Transposed format]
No.Columns : 2 No.Rows : 38
All.Columns: 3 All.Rows : 40
Sorted by # Sequence Reference : Sequence
Col.# 1:LAB001 Unit:(sec) Format:F6.0 R*4
Col.# 2:LAB002 Unit:(erg/sec) Format:F6.0 R*4

Selection : ALL

Midas 013> SORT/TABLE flux :LAB002 !sort table according to
!increasing values of a column

Midas 014> REGRESSION/POLYNOMIAL flux :LAB001 :LAB002 5 !polynomial fit

flux
POLYNOMIALS Input Table : UNION Type : MUL L-S
N.Cases : 38 ; N.Ind.Vars : 1
Dependent variable : column # 1
Independent variable: column # 2 degree : 5

degree
0 4.4818E+04
1 -2.6778E+01
2 7.4671E-03
3 -1.0405E-06
4 7.1309E-11

1–November–1988

2–10 CHAPTER 2. COOK-BOOK

5 -1.9126E-15

R.M.S error : 72.04152

Midas 015> SAVE/REGRESSION flux REGRE !save the result of
!regression in a descriptor

Midas 016> CREATE/COLUMN flux :FIT !create a new column
!in the table

Warning: Column overflow mechanism activated
Midas 017> COMPUTE/REGRESSION flux :FIT = REGRE !compute

!the results of the regression
Midas 018> READ/TABLE flux :FIT @1..4,@6,@9

Table : flux

Sequence FIT
-------- -------------

1 1.1337231e+04
2 1.0955642e+04
3 1.0690593e+04
4 1.0505399e+04
6 1.0174703e+04
9 9.7462227e+03

-------- -------------

Midas 019> CREATE/GRAPH
!create graphic window
Midas 020> PROJECT/TABLE flux newflux :LAB002 ! project one

!column of a table in a new one
Midas 021> INTERPOLATE/TT newflux :LAB002,:SPLINE flux :LAB002,:LAB001 0.001

!spline interpolation
Midas 022> CREATE/GRAPH
!create graphic window
Midas 023> PLOT/TABLE newflux :LAB002 :LAB001 !plot table columns
Midas 024> SET/PLOT LTYPE=1 STYPE=0 !plot table columns
Midas 025> OVERPLOT/TABLE flux :LAB002 :SPLINE
Midas 026> SELECT/TAB newflux sequence.gt.5 !select part of the table
Midas 027> COPY/TAB newflux result !copy selected table
Midas 028> OUTTAPE result.tbl result.fits !save file in FITS

!format on disk
Midas 029> BYE

2.3.2 Exit and Logout

To exit from the MIDAS monitor type BYE. You can reenter the MIDAS monitor at any
time by typing GOMIDAS (for VMS systems) or $gomidas (for UNIX systems).

1–November–1988

2.3. GETTING STARTED 2–11

Command Description

TUTORIAL/ALIGN Explains the use of the ALIGN command
TUTORIAL/EXTRACT Demonstrates the extraction of a subimage from a father image
TUTORIAL/FILTER Displays some of the filtering options
TUTORIAL/FIT Shows the fitting capabilities
TUTORIAL/HELP Explains the usage of the HELP command
TUTORIAL/ITT Shows the effect of various Image Transformation Tables on an

image
TUTORIAL/PLOT Demonstrates the plot package facilities
TUTORIAL/LUT Shows the effect of various Look–Up Tables on an image
TUTORIAL/PLOT Demonstrates the plot package facilities
TUTORIAL/SPLIT Shows the split–screen capabilities of the display
TUTORIAL/TABLE Demonstrates the table system

Table 2.1: List of Tutorials

2.3.3 Executing System Commands

It is possible to execute commands of the operating system inside MIDAS. This is done by
typing a $ followed by the operating system command you want to have executed. After
this command has been finished you can continue your work inside MIDAS.

2.3.4 Some Useful Commands

In table 2.2 you will find a list of some of the most frequently used MIDAS commands.
Refer to the detailed command description or the on–line HELP for more details

1–November–1988

2–12 CHAPTER 2. COOK-BOOK

Command Description

HELP command display help for command
HELP/QUAL
qualifier

help for all commands with the given qualifier such as IMAGE,
TABLE, CATALOGUE, etc.

SET/CATAL enable cataloging
CREATE/ICAT create a catalogue of image files
READ/ICAT list the image frames available
LOAD/IMAGE frame load and display frame on the image display
MODIFY/LUT interactively change the look–up table
COMPUTE/IMAGE perform image arithmetic
EXTRACT/TRACE interactively extract a line from an image
PLOT/TRACE plot the extracted line
ZOOM zoom an image on the cursor
TUTORIAL/tutorial execute one of the existing tutorials

Table 2.2: List of Often Used Commands

1–November–1988

Chapter 3

Monitor and Command Language

This chapter is organised as follows:

• In the first two sections we describe how to start MIDAS and how the host operating
system and MIDAS coexist.

• Section 3 explains the different data structures used in MIDAS and how to access
them in a MIDAS session.

• Section 4 describes the syntax of the MIDAS commands, as well as the editing and
recalling of commands and also the on-line HELP facility in MIDAS.

• In section 5 you will find some details about how the MIDAS commands are executed.

• Then follows the largest and most detailed section (section 6), which gives in-depth
information about the MIDAS command language (MCL).
With MCL you can write high level MIDAS “programs” which are called MIDAS
procedures to distinguish them from programs written in a language like FORTRAN-
77 or C.
The topics include:

– the MCL commands

– passing parameters in MIDAS procedures

– symbol substitution

– loops and conditional branching

– special functions

• Section 7 introduces the MIDAS contexts.

• Section 8 explains how to run application programs written in FORTRAN or C inside
MIDAS. It also shows how to debug these programs as well as MIDAS procedures.

• All the commands related to MIDAS catalogs are listed in section 9, together with
an example of how to use catalogs in MIDAS procedures.

3–1

3–2 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

• The MIDAS login procedure and MIDAS user levels are the topics of the last two
sections.

The MIDAS directory tree structure is not covered in this chapter. For those interested,
please refer to the MIDAS Environment document.

3.1 Starting the MIDAS Monitor

In order to get properly initialised, MIDAS needs the following information

• the MIDAS user mode to work in: Parallel or Single User mode,
the default is Single User mode

• the MIDAS working directory for internal files and (optionally) private procedures:
the default is a subdirectory midwork in your login directory,
i.e. SYS$LOGIN:[MIDWORK] in VMS or $HOME/midwork in UNIX.
This directory does not have to be the same directory where your data files are
stored.

Type SETMIDAS on a VMS system or setmidas on a UNIX system if you want to change
the defaults for the mode and the MIDAS work directory.
Two other variables are very important to MIDAS: MIDVERS, which holds the MIDAS
version you use at your site, and MIDASHOME, the root directory for the MIDAS system
code. These variables should have been set up correctly by your system manager when
MIDAS was installed.

To start MIDAS, type INMIDAS on a VMS system or inmidas on a UNIX system. This
will initialise the MIDAS monitor as follows:

- In VMS the logical name MID WORK is assigned to the MIDAS working directory; in
UNIX the environment variable MID WORK is set accordingly. If the working directory
does not yet exist, it is created.
All internal files created by the MIDAS monitor will be stored in the MIDAS working
directory. This is also the place to store your own login.prg as well as all your other
private MIDAS procedures.

- In Single User mode, all MIDAS log- and keyfiles (FORGRxy.LOG, FORGRxy.KEY
- where xy is the MIDAS unit described below) which exist in the MIDAS working
directory as well as all MIDAS internal files are deleted.
In Parallel mode no files are deleted.

- In VMS the user process is renamed to MIDASxy

- Depending upon how your MIDAS system manager installed MIDAS you will be asked
to enter the identification of a MIDAS unit as a two-character string.

1–November–1992

3.2. MIDAS AND THE HOST OPERATING SYSTEM 3–3

Usually a two-character string beginning with X, Y or Z defines a unit with no image
display capabilities and A0, A1, ... or 00, 01, ..., 99 indicate a unit with image display
functionality.
So A1, XA, YF or ZS will all be valid units. Upper and lower case characters are treated
alike. If you work in Parallel mode you have to use different MIDAS units for each
session.
The MIDAS unit is appended to the names of all MIDAS internal files which are
created at startup time.

Now the terminal screen is cleared and the current MIDAS version as well as the computer
you are on and operating system used are displayed. Finally the prompt string

Midas 001>

appears on the terminal screen. You are now ready to execute any of the MIDAS com-
mands that are currently available.

The internal MIDAS files all reside in the MIDAS working directory, but the data files are
taken from the current default directory unless the complete file specification is given in
the data file name.
To switch from one data directory to another you have to terminate MIDAS via BYE, change
the default directory SET DEF (VMS) or cd (UNIX) and GOMIDAS (VMS) or gomidas
(UNIX) to continue with MIDAS in the new directory.

MIDAS is a case insensitive system. That means, you can type your input with up-
per or lower case characters. There are, however, some pitfalls with respect to the data
files that reside in the local file system. In VMS, the system automatically translates
all file names to upper case, so LOLA.BDF and lola.bdf specify exactly the same file. In
UNIX, file names may be specified using lower and upper case, so LOLA.BDF and lola.bdf
are two different files. The convention in MIDAS is to always use lower case file names
(e.g. in tutorial procedures) to guarantee portability between VMS and UNIX. Also, all
default file types are specified in lower case, e.g. .bdf and .tbl for images and tables.

Note

All MIDAS commands in the following sections are printed with capital letters.
This is just for reasons of readability, i.e., to highlight them. The commands
could all be typed in lower case as well.

3.2 MIDAS And the Host Operating System

Care has been taken that MIDAS and the Host Operating System (DCL for VMS and
Bourne or C-shell for UNIX) co–exist smoothly and complement each other. Migration
from one environment to the other is simple:

1–November–1992

3–4 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

If you are in the MIDAS environment, type BYE to switch back to the Host System.
If you have returned to the Host environment from a MIDAS session, (indicated by the
$–prompt in VMS, and by $ or % in UNIX), type GOMIDAS (in VMS) or gomidas (in
UNIX) to revive MIDAS. The status of the keywords and the command buffer of the
stopped MIDAS session are preserved - if you want to start afresh, use INMIDAS (VMS)
or inmidas (Unix) again.
You may also use Host commands directly inside MIDAS by preceding them with ‘$’. For
instance,
Midas 027> $directory (in VMS) or
Midas 027> $ls (in UNIX)
will display the contents of the current directory.
Please, note, that currently this mode of operation will only invoke Bourne shell com-
mands in Unix, not C-shell or Kornshell commands. To execute C-shell (or any other
Shell) commands you have to insert them in a Bourne shell script which has as the first
line: #! /bin/csh, or: #! /bin/ksh, etc.

Note

If you work on a VMS system, beware of DCL command procedures:
DCL modifies command I/O streams when executing a procedure. This causes
problems for the interprocess communication inside MIDAS. When executing
a DCL procedure via $ @ ‘procedure’ the correct settings will be maintained
inside MIDAS.
However assigning a symbol MIMI to the command above and then executing
the DCL procedure by just typing $ MIMI will lead to disaster from which only
a BYE and subsequent GOMIDAS will get you going again.

Since images, tables, etc. are standard disk files, all Host commands related to file oper-
ations can be employed. However, if a MIDAS catalog is used, care has to be taken that
the information in the catalog is not invalidated, when e.g. renaming or deleting data files
outside MIDAS (i.e. using commands of the host file system directly).

3.3 MIDAS Data Structures

Here we describe and discuss the various data entities (structures) that MIDAS recognizes.
They are stored in an internal binary format, accessible only through MIDAS and fall into
the following categories:

Images are a set of data of same physical significance in one to three dimensions. The
data must be sampled with constant stepsize along all 1, 2 or 3 axes and are stored
in different formates, e.g., as bytes, 16 bit integers, or 32 bit reals on disk. However,
practically all MIDAS applications work on real data, so the image pixels are converted
on the fly to real format if necessary. The default file type is .bdf .

1–November–1992

3.3. MIDAS DATA STRUCTURES 3–5

Tables are a structure for handling data which can be arranged in rows and columns. The
data may be of numerical or character type. Numerical data may be sampled in any
arbitrary fashion. The default file type is .tbl .

Fit-files are “degenerate” image files with just descriptors and no pixels and used to store
the parameters needed for the fitting functions. The default file type is .fit .

Descriptors are variables attached to the structures mentioned above (i.e. stored in the
same file) and describe the structure of the tables, images and fit files. They can
also store any other auxiliary information connected to the data such as histograms,
coordinates, comments and so on. For fit files they contain the fitting parameters.

Catalogs contain lists of either images or tables or fit files for the purpose of grouping data
together within MIDAS. They are exceptional in the sense that they are implemented
as ASCII files so you can list and edit them (with care!) outside MIDAS. The default
file type is .cat .

Keywords are variables which can be used to pass information from one MIDAS program
to the next or to temporarily store intermediate results (there are also reserved or
system keywords that keep MIDAS system parameters). They are referred to by a
name and can be easily manipulated from the terminal or MIDAS procedures.

The individual data points in an image are referred to as “pixels” and in a table they
are called “elements”. The paragraphs below describe the structure of descriptors, and
keywords, and the methods for specifying the individual data values in images and tables.

Note

There is no special syntax for file names in MIDAS. You can use any legal
name of your host file system for images, tables and fit files. The only restric-
tion is that the first character of the names of MIDAS data frames must be
an alphabetical character (a – z). All following characters may be any charac-
ter except ‘+’, ‘-’, ‘*’, ‘’̂, ‘(’ and ‘)’, furthermore, the character ‘/’ is invalid
in Unix and ‘$’ is invalid in VMS.
Thus abcdef.image, flat sky.bdf, k12324 fit.zzz are valid names for MI-
DAS data files, whereas 1mariposa.ima, a+b.bdf and (xyztest.bdf are not.
Also file names like abc.bdf.mine will not be appreciated by all MIDAS ap-
plications.
As mentioned before, file names are case sensitive in MIDAS on Unix systems;
names for descriptors and keywords are not. Thus, referring to a keyword with
name KEYA may be done e.g. via keyA or Keya.

3.3.1 Specifying a Descriptor

Descriptors have been derived from the concepts used in a FITS file header and have many
similarities with the FITS keywords. In particular the names of the MIDAS standard de-
scriptors, e.g. NAXIS, NPIX, etc., (for details see Appendix C of the MIDAS Environment

1–November–1992

3–6 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

doc.) correspond to those in the FITS header.
Descriptors come in four flavours: integer, real, double precision and character. Mixed
types are currently not supported.
Each descriptor also has a name (max. 15 chars.) and a length. Writing values into po-
sitions beyond the current length leads to an automatic extension of the descriptor (and
update of its length) just as a text file is extended by the “editor” while you are editing
it.

The command to write values into a descriptor requires the name of the data file (which
could be an image, table or fit file), the descriptor name, the descriptor type, the first
element to be accessed, and the total number of elements to be transferred (all separated
by a ‘/’ (slash)). Finally, the data values are given (separated by commas for numeric
data, but no spaces). For example,

WRITE/DESC imgfile Descname/C/1/7 Anyname

would write the ASCII string Anyname into the character descriptor Descname associated
with the data file imgfile.bdf. Since spaces serve as parameter delimiters in MIDAS
they have to be enclosed by double quotes (" ") if used as data. So

WRITE/DESC imgfile Descname/C/1/7 " "

would fill Descname with 7 blanks.

WRITE/DESC imgfile Descname/R/4/3 17.3,8.8E2,-.3

would write the numbers 17.3, 880.0, -0.3 into elements 4,5 and 6 of real descriptor
Descname. If the descriptor were created with fewer than 6 elements it would be expanded
automatically.

WRITE/DESC tblname.tbl Descname/R/4/3 17.3,8.8E2,-.3

would write the numbers 17.3, 880.0, -0.3 into elements 4,5 and 6 of real descriptor
Descname of the table file tblname.tbl.
Note, that we had to add the file extension .tbl to the name tblname, since the com-
mand WRITE/DESCRIPTOR defaults the first parameter to an image and appends the file
type .bdf if none is given by the user.

This is how descriptors work at the most basic level. However, in many cases, higher
level commands have been implemented to update specific descriptors. The MIDAS com-
mand CUTS, which sets the high and low cuts of an image (in descriptor LHCUTS) for
displaying or plotting it, is an example of this.

Some of the commands dealing with descriptors are:
READ/DESCR, WRITE/DESCR, SHOW/DESCR, DELETE/DESCR, INFO/DESCR, COPY/DD.

1–November–1992

3.3. MIDAS DATA STRUCTURES 3–7

3.3.2 Specifying Keywords

As is the case for descriptors, keywords also have a name (max. 8 chars.), a type and a
length. However, this length is fixed, and once the keywords are created with a certain
size, they cannot be extended. The possible types for keywords are: real, integer, character
and double precision. Mixed types are currently not supported.
In order to write a value to a keyword, the same format as for descriptors is used.

WRITE/KEY INPUTC/C/1/8 AKeyword

This command would write the ASCII string AKeyword into the character keyword INPUTC
and

WRITE/KEY AZTEC/I/1/2 17,-22

would write the values 17 and -22 into the integer keyword AZTEC (elements 1 and 2).

Some of the commands dealing with keywords are:
READ/KEY, WRITE/KEY, SHOW/KEY, DELETE/KEY, COPY/KEY, COMPUTE/KEY.
Keywords and descriptors can be copied to each other via COPY/KD and COPY/DK.

3.3.3 Specifying Elements in a Table

The MIDAS table file system is described in detail in chapter 5 of this volume. Here we
just explain briefly how to access the various values in a table file. To do so, it is necessary
to specify the table name, the column and the row. This is done in the following format:

table column row

where
table is the table name;
column is the desired column which can be referenced by label as :col or by sequence
number as #n;
row is the desired row referenced by number as @n or by a value in a predefined reference
column.
Like descriptor and keyword names, column labels are case insensitive. The command:

READ/TABLE tname #3 @10

would display the element in column 3 of row 10 in table file tname.tbl .
Similarly, the command:

READ/TABLE tname :MAGNITUDE 20.0

would access the element in the column labelled ‘MAGNITUDE’ and value 20.0 in the
reference column (this reference column must have been defined before via the SET/REF
command).
Note, that we need not specify the file extension .tbl as in the descriptor related com-
mands. All table commands default the data files to tables with extension .tbl.

Some of the commands dealing with tables are: READ/TABLE, WRITE/TABLE, SHOW/TABLE,
EDIT/TABLE, COPY/TABLE.

1–November–1992

3–8 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

3.3.4 Specifying Pixels in an Image

In some commands it is necessary to specify the columns and rows of an image to which
that command should refer.
This is done in the following way for e.g. a 2-dim frame: frame[x1,y1:x2,y2]
where the column specification, x or the row specification, y can be any of

• world coordinates, indicated via real or integer numbers: 20.0,300

• pixel numbers, indicated via integers preceded by @: @35,@200

• or a special symbol to indicate start (<), or end (>) of a row or column; thus
[@20,<:@20,>] specifies the complete 20th column of a 2-dimensional image

World coordinates are the physically meaningful coordinates with units such as wave-
lengths or arcseconds (which are defined in the descriptor CUNIT). Pixel numbers (starting
with 1 for each dimension) are the indices of an image seen as an array.
For example, extracting the complete 12th plane from the 3-dim image stored in cube.bdf
is done via

EXTRACT/IMAGE plane12 = cube[<,<,@12:>,>,@12]

Some of the commands dealing with images are:
READ/IMA, WRITE/IMA, COMPUTE/IMA, STATIST/IMA, DELETE/IMA, COPY/II.

3.4 Command Syntax

After start–up, the MIDAS monitor prompts you to interact with MIDAS by entering
command–lines on the terminal.
To enter a command-line over more than one terminal/window line, use the continuation
character, a minus sign (-), as the last character of a line (the total command line is
limited to 256 characters). If you want to enter more than one command on a single line,
separate the commands with a semicolon and space (;).
Each MIDAS command line is structured as

command/qualifier par1 par2 . . . par8 !comments

The command describes the general action you want to perform (a verb) and the qual-
ifier usually specifies the object of that action, e.g. WRITE/DESCRIPTOR. The command
parameters (max. 8) hold all other information needed to perform the required action. All
parameters are separated by spaces.

Currently the following “objects” exist in MIDAS:

• keywords

• descriptors

1–November–1992

3.4. COMMAND SYNTAX 3–9

• bulk data frames

– images

– tables

– fit files

– ASCII files

• catalogs

– for images

– for tables

– for fit files

• auxiliary image–display data structures (where applicable)

– LUTs (Colour Look–Up Tables)

– ITTs (Intensity Transfer Tables)

– cursor arrays

– overlay tables
(internally these structures are stored in MIDAS table files)

All user input and output from the MIDAS commands is recorded in an ASCII logfile
which serves as a hardcopy of a MIDAS session.
Comments may be appended to the command string and are separated by at least one
white space and ‘!’ (exclamation mark) from it. To give a complete line of comments,
enter ‘!’ as the first character of the input line (may be useful for structuring the contents
of the MIDAS logfile).
Commands and qualifiers may be abbreviated to the number of significant characters
needed to distinguish them from the rest. At most 6 characters are necessary for the com-
mand and 4 characters for the qualifier. Nearly all commands need a qualifier, but there
is only one qualifier per command (e.g. comm/qual1/qual2 is unsupported in MIDAS).
Command and qualifier are separated by a ‘/’ (slash). In case you omit the qualifier, the
default qualifier of that command is used by MIDAS.
The default qualifier of a MIDAS command may be displayed via SHOW/COMMAND command.
For example, the default qualifier for the LOAD command is IMAGE, so typing LOAD/IMAGE
or LOAD will have the same effect.
The parameters depend on the actual command. A space (blank) is the delimiter for
parameters in a command-line. Commas are used to subdivide parameters. If you need a
space inside a parameter, this parameter has to be enclosed in double quotes (”).
Normally parameters are position dependent, i.e. par1 is the first, par2 the second, and
so on. This may be overridden by using the following syntax:

command/qualifier P4=par4 P1=par1 P7=par7 . . . !comments

1–November–1992

3–10 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

If the command procedure which is activated by a MIDAS command uses the CROSSREF
command, it is also possible to execute that command via:

command/qualifier label4=par4 label1=par1 label7=par7 . . . !comments

The help text of each command specifies whether such a cross referencing of parameters
is possible and if so, which labels to use. For details about the command CROSSREF see
the description of it in the section below on MIDAS procedures.

Most parameters have defaults. If you do not want to override them use the symbol
‘?’ (question mark) for a parameter if you use the position dependent format. Therefore,
command/qualifier P4=22.345 is equivalent to command/qualifier ? ? ? 22.345
With the command CREATE/DEFAULTS you can change the preset defaults for each MIDAS
command.
To abort a MIDAS command, use Ctrl/C (sometimes you also have to hit Return),
which will return control to you. The exception are commands which interact with a
display/graphics window in the X11–Environment where you run the risk of losing the
MIDAS display/graphics window server, which must then be re–initialized, see chapter 6
for details.

3.4.1 Command Recalling

The last 15 commands entered on the terminal are kept in an internal buffer (the no. of
commands saved can be changed via SET/BUFFER). To recall (and execute) any of these
commands, simply type the associated command number. This is the number “xyz” ap-
pearing in the prompt Midas xyz> when that command was entered. To display the
command buffer, simply hit Return .
If you want to recall more than one command at once, enter all the relevant command
numbers (separated by a semicolon and space), e.g. enter 14; 17; 22 if you want to repeat
the commands numbered 14, 17 and 22 . Also ‘14; read/key in a; 17’ is possible.

To recall commands not by number but by pattern, use :pattern to repeat the last
command matching the specified pattern. For example, if the last two commands in your
command buffer are:

22 READ/IMAGE supernova
23 show/com

Then, typing 22 as well as :READ or :nova will execute the command READ/IMAGE supernova
again. Note that for the pattern matching MIDAS does make a distinction between upper
and lowercase.
Besides repeating complete input lines it is also possible to just use parts of the last com-
mand line. Each “token” of the last command line is saved internally until the next input.
A “token” is the information separated by spaces in the command line. To repeat the

1–November–1992

3.4. COMMAND SYNTAX 3–11

tokens on a subsequent command line merely type a ‘.’ For example, if you have in the
command buffer:

READ/KEY in a
LOAD/IMAGE myframe 0 2,2

Then typing ‘ . yourframe . . ’ as the next command is equivalent to typing
‘LOAD/IMAGE yourframe 0 2,2’.

All features described so far apply to genuine MIDAS commands as well as to host system
commands (where the first character of the command line is the $ sign).

Note

Some words of caution:
In VMS the version number of files may be specified using a semicolon, e.g.
$ RENAME file.typ;7 lola.bdf. Typing such a command inside MIDAS will
not work, since the monitor will interpret this input as two Midas commands.
Instead, use a dot to separate the version number, e.g. $ RENAME file.typ.7

lola.bdf.
In UNIX the repetition of tokens may cause trouble. Consider the following:
Midas 123> load/ima vaca

Midas 124> $cp /elsewhere/toro.bdf .

The intention was to simply copy the file toro.bdf from somewhere else to the
current directory. But instead of toro.bdf you will find a strange file named
? in your directory...
In the line ‘123’ only two tokens are entered, so all other 8 tokens are set to the
default value ‘?’. In line ‘124’ the third token will be set to the third token in
the line above, so it changes to Midas 124> $cp /elsewhere/toro.bdf ?

Instead, specify also the result frame completely, e.g. $cp /elsewhere/toro.bdf

toro.bdf

3.4.2 Command Line Editing

The commands in the internal command buffer may also be edited. To edit such a com-
mand, type the command number preceded by a dot (period) or followed by a dot. So
‘.xyz’ or ‘xyz.’ will both display the command ‘xyz’ and put you into the edit mode
where you can modify that command.
If you employ the pattern matching style, use ‘.:pattern’ or ‘:.pattern’ to edit a
previous command containing that pattern.
You edit that line using the arrow keys and delete key of the keyboard and retyping the
characters. To toggle between Replace and Insert mode use CtrlA.
Using ‘.xyz’ (‘.:pattern’) will lead to the creation of a new MIDAS command with
new command number, whereas ‘xyz.’ (‘:.pattern’) modifies the specified command

1–November–1992

3–12 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

directly (and keeps this command number).
As mentioned above only the 15 most recently used commands are kept in the command
buffer on a first–in, first–out basis. So if you repeat or edit a certain command via its
MIDAS command–number at least once in 15 command inputs, this command will always
be kept in the buffer.
However, you may wish to make sure that a command remains always in the buffer. En-
tering ‘xyz/LOCK’ will lock the command with number ‘xyz’ in the buffer; to unlock
the command, use ‘xyz/UNLOCK’. CLEAR/BUFFER empties the complete command buffer
and resets the command counter to 1 (since 3 digits are used for the command count, the
counter is also reset to 1 after command no. 999).

3.4.3 Command Line Suspension

If, while entering a command, you realise that you forgot the full command syntax or
want to check something else, a mechanism has been introduced to let you interrupt the
command line, execute another command or commands, and then resume with the in-
terrupted line. To interrupt a command line enter ‘\’ (back–slash) as the last character
and hit Return . The command string is then saved internally. To resume entering the
interrupted command line, type ‘\’ (back–slash) again followed by Return . The saved
command line will be displayed on the terminal and you may add more input.

Note

You cannot edit or change the saved portion of the command after reentering
the interrupted string, since your new input is handled as if it were a continu-
ation of the original command line.

3.4.4 On–Line Help

The help facility of MIDAS (command HELP) provides detailed descriptions of all supported
commands and qualifiers. This applies also to the HELP command itself! All MIDAS
commands are also described in detail in the appendices of this manual.
The command HELP/SUBJECT will provide some cross–references. If you don’t know under
which command name a certain function is implemented in MIDAS, enter HELP/SUBJECT
function. If on–line information exists for that function, all related MIDAS commands
will be listed.
Also, the TUTORIAL commands will help you in exploring the MIDAS system. Use the
MIDAS command HELP TUTORIAL to find out which tutorials exist and try them out.
There is also a tutorial about the HELP command itself. Use TUTORIAL/HELP to exercise
many of the features described in this section.
If you work in an X-Window environment start up XHelp, the graphical user interface to
the MIDAS Help facility, by entering the MIDAS command CREATE/GUI HELP.
Some of the other HELP features are given in the following table.

1–November–1992

3.5. EXECUTION OF COMMANDS 3–13

Command Description

HELP To display all currently existing MIDAS commands and topics
HELP comnd To display all the comnd/qualif combinations available for the

given comnd
HELP comnd/qualif To get detailed information about the specified comnd/qualif

combination
comnd/qualif ?? To display full command syntax (one line) of specified

comnd/qualif
pattern? To list all commands which begin with given pattern
HELP/QUALIF qualif To list all commands which may use the given qualif
HELP/SUBJECT
subject

For any info related to subject

HELP/CL comnd To get detailed information on the MIDAS command language
comnd

HELP/KEY keyword To get detailed information about the specified keyword
HELP [Topic] To get information about a topic, e.g. the standard descriptors

or available contexts
HELP/APPLIC To get information about available application procedures

Table 3.1: Help Features

There is a set of MIDAS command procedures that fulfill various functions that are very
application specific. Therefore, it did not seem worthwhile to implement them as general
MIDAS commands. Use HELP/APPLIC to get information about these procedures.

Normally, the HELP text is not written to the MIDAS log file (to save space) but if
you wish to include this, you may do so by setting keyword LOG(3) to 1 via the MIDAS
command WRITE/KEY LOG/I/3/1 1 . The MIDAS command WRITE/KEY LOG/I/3/1 0
will disable the logging of HELP. To print out the help text, use PRINT/HELP.

3.5 Execution of Commands

MIDAS commands fall into two categories: the basic commands and all other application
commands. The basic commands are executed inside the MIDAS monitor, which is the
program you are interacting with. All other commands are implemented by executing
a MIDAS procedure which runs one or more programs in a subprocess (child process).
During the time a command is being processed in the subprocess, the MIDAS monitor
is suspended until the corresponding program terminates in the subprocess. Only then
control is returned to the user. To stop a command prematurely, type Ctrl/C .

1–November–1992

3–14 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

Since process creation is much more expensive in VMS than in UNIX these subprocesses
are handled differently in VMS and UNIX:
In VMS, the subprocess, named FORGRxy (with xy the MIDAS unit specified at start–
up), is created at MIDAS initialisation time and kept alive until you exit from MIDAS via
the command BYE.
In UNIX, the child process is created each time the MIDAS command executes an ap-
plication program. Upon termination of that program the child process dies. This also
applies to commands of the Host System – they are executed in a subshell.
Therefore, issuing ‘$ cd /elsewhere’ inside MIDAS does not change your current direc-
tory permanently...

Some internal files are created when starting a MIDAS session in the directory speci-
fied via MID WORK:. The most important ones are the keyword file and the logfile.
The keyword file is named FORGRxy.KEY and holds the keyword data base accessible by all
programs running in the MIDAS environment.
The logfile is named FORGRxy.LOG and receives a log of all user input and all MIDAS
output on the terminal (except HELP text, as explained before, and output from the Host
System). The commands LOG/. . . manipulate that file. The logfile serves also as a “fall
back” utility in case of system crash or other breakdown. In such a case the command
PLAYBACK/LOG ‘logfile’ may be used to regenerate the complete MIDAS session.

Note

In order to use the playback facility, you have to rename the original logfile
before restarting MIDAS via INMIDAS or inmidas. Remember that INMIDAS
deletes old MIDAS logfiles unless you run in parallel mode.

3.6 MIDAS Command Language

The MIDAS command language consists of all the commands which you enter interac-
tively, and an additional set of commands to provide the necessary tools to write MIDAS
“programs”, called MIDAS procedures.
The MIDAS Command Language is a flexible and powerful tool to integrate application
modules into MIDAS and to do rapid prototyping. But it is not intended to be a full blown
programming language - for programming tasks MIDAS supports the standard interfaces
in FORTRAN 77 and C (cf. the MIDAS Environment document). It is an interpreted
language, so you do not need to compile MIDAS procedures. It is also a “Macro” language
in the sense that you can build complex procedures, attach these procedures to a MIDAS
command and qualifier combination and then put a single line with that command name
into yet another procedure (up to 10 levels deep).

For a detailed explanation of all the MIDAS Command Language commands see the
appendix of this volume or use the MIDAS command HELP/CL.

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–15

The additional Command Language commands cannot be used interactively and are listed
below:

BRANCH variable comparisons labels
Compare variable with comparison values and branch to related labels

CROSSREF label1 . . . label8
Define cross reference labels for parameters par1 . . . par8

DEFINE/LOCAL key data
Define local keyword key and initialize it using data

DEFINE/PARAMETER par def type prompt limits
Declare default value, type, promptstring and limits for parameter par

DO loopvar = begin end stepsize
. . . command body. . .

ENDDO
Execute a do–loop (as in FORTRAN)

ENTRY procedure
Define the beginning of a MIDAS procedure in procedure file with a different name

GOTO label
Jump to a label defined as label:, see below

IF par1 op par2 command
Execute conditional statement (as in FORTRAN)

IF par1 op par2 THEN
. . . if-sequence. . .

ELSEIF par1 op par2 THEN
. . . else if-sequence. . .

ELSE
. . . else-sequence. . .

ENDIF
Execute a conditional statement (as in FORTRAN, but ELSEIF is one word!)

INQUIRE/KEY key prompt-string
Demand value for key from the user

label:
Declare a label,e.g. HOME:

1–November–1992

3–16 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

RETURN par1 . . . par3
Return to calling procedure or terminal and pass up to 3 parameters

PAUSE
interrupt the current procedure and return to interactive level

The following commands may also be used interactively, but are especially useful inside
MIDAS procedures:

@ (or: @@, or: @a, or: @s, or: @c proc par1 . . . par8)
Execute the MIDAS procedure proc which is stored
in MID PROC:, (or in the current directory or MID WORK:),
or in APP PROC:, or in STD PROC:, or in CON PROC:, respectively

ECHO/qualif levela,levelb
Control the display of MIDAS commands (qualif = ON, OFF, FULL)
for procedures executing at a level in the interval [levela,levelb]

COMPUTE/KEY reskey = expression
Evaluate an algebraic expression involving keys and constants, store result in reskey

SET/FORMAT I-format E-format
Define formats used for replacements of keyword and descriptor names
in procedures with their actual values

WRITE/OUT text
Display text on terminal

! comment
Indicate beginning of a comment line

The following “immediate” commands can be executed in order to set values of various
data structures:

key = expression Short form of COMPUTE/KEY key = expression
frame,descr = value Set descr of frame to value
frame[x,y,z] = value Set pixel with coordinates (x,y,z) of frame to value
table,column,row = value Set table element to value

MIDAS procedures are handled in the following way:
The ASCII procedure file is read in by the MIDAS monitor and translated into an internal
more compact format.This translated code is then executed inside the Monitor.

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–17

The individual lines of code are parsed and decoded in two passes: In the first pass, all
symbol substitutions are done using the specified formats to convert from binary to ASCII.
In the second pass, all control and conditional statements are processed directly by the
Monitor (e.g. positioning the internal program pointer to the command line referred to
by a GOTO statement) until an “executable” command line is found which is passed on to
the usual command input pipeline of MIDAS as if it were typed in by the user.

3.6.1 Passing Parameters in MIDAS Procedures

A MIDAS command procedure may be created with an editor or via the command
WRITE/COMMANDS which constructs a MIDAS procedure from the current command buffer.
Default type for such a procedure file is .prg . This command procedure can then be
executed with the commands:

@ file par1 par2 . . . par8 ! if the procedure is in MID PROC
@@ file par1 par2 . . . par8 ! if in current directory or MID WORK
@a file par1 par2 . . . par8 ! if in APP PROC
@s file par1 par2 . . . par8 ! if in STD PROC
@c file par1 par2 . . . par8 ! if in CON PROC

where par1 . . . par8 are the actual parameters which may be accessed within the com-
mand procedure through the character keywords P1 . . . P8.

The maximum size of a single parameter is 80 characters, but all parameters together
may not exceed 256 characters (which is the maximum size of a command line). The size
of the code of a procedure is not limited.
In the following, let us assume that all procedures are stored in the directory specified by
MID WORK so that we always use the MIDAS command @@ to execute them. A command
procedure in turn can execute another command procedure (or itself) – up to 10 procedure
levels deep. The end of a procedure file or the commands RETURN or ENTRY will bring you
back up to the next higher level.
To pass parameters back to a higher level command, use the command
RETURN retpar1 . . . retpar3 . These return values can then be accessed via the char-
acter keywords Q1, Q2, Q3. This technique is an alternative to using global keywords for
that purpose.
To use the actual values of a parameter in the procedure, the formal parameters P1,. . . ,P8
have to be enclosed in curly brackets ({ and }) (cf. section 3.6.2):

!+
! Example 1, MIDAS procedure exa1.prg
!+
READ/KEY {P1} ! read keyword the name of which is given as par1
@@ test {P2} ! execute test.prg and pass par2 as first parameter
WRITE/KEY INPUTC {P2} ! write contents of par2 into keyword INPUTC

Entering the MIDAS command @@ exa1 OUTPUTC ESO-Garching will lead to the execu-
tion of:

1–November–1992

3–18 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

READ/KEY OUTPUTC
@@ test ESO-Garching
WRITE/KEY INPUTC ESO-Garching

The command @@ always passes 8 parameters to a command procedure. If fewer than
8 parameters are specified in the command line, dummy parameters (indicated by the
special character ‘?’ (question mark)) are internally appended.
Therefore, @@ exa1 OUTPUTC will put the character ‘?’ into the first element of the char-
acter keyword INPUTC.

If we enter the command ECHO/ON before executing the procedure we would actually see
the above commands displayed on the terminal (cf. section 3.8.1).$

Note

You can also use apostrophes to indicate symbol substitutions (e.g. ’P1’). How-
ever, it is preferable to use { and } instead, since it makes nesting of substitu-
tions possible.

The command DEFINE/PARAMETER should be used for each parameter that is referenced in
the procedure. This command will set the defaults, the type, and the prompt string for
each parameter. For numeric values passed as parameter also lower and upper limits can
be specified in the DEFINE/PARAMETER command.
The default values defined inside the procedure will be used in case the parameters are
not explicitly provided (i.e. entered as ‘?’):

!+
! Example 2, MIDAS procedure exa2.prg
!+
DEFINE/PAR P1 999 NUMBER "Enter first input number: " 22,1024
WRITE/KEY INPUTI/I/7/1 {P1} ! store contents of P1 in INPUTI(7)

The MIDAS command: @@ exa2 77 will set INPUTI(7) to 77, whereas @@ exa2 will set
INPUTI(7) to 999.
Entering @@ exa2 17 will result in an error since the valid interval for the number passed
as the first parameter is [22,1024].
If you do not want to give default values for a parameter (in other words, if specific input
is required for this parameter), use the symbol ‘?’ as default. In that case, and if the
relevant parameter is not given, the user will be prompted for this parameter (using the
prompt string specified in the DEFINE/PAR command) .
The DEFINE/PARAMETER line above also demonstrates how to put a character string with
embedded blanks into a single parameter (remember that blanks are parameter delimiters
in MIDAS) by enclosing the prompt string with double quotes.

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–19

The DEFINE/PARAMETER command also checks the type of the parameter. The types which
may be tested are: I(mage), T(able), F(itfile) , N(umber), C(haracter).
If for any reason you do not want type checking, use the character ‘?’ instead of any of
the types listed above.
For file–type parameters it is checked that it is a valid MIDAS file name (first character
must be an alphabetic character). Also, DEFINE/PARAMETER translates catalog numbers,
e.g. #27 to the corresponding file name.
For numerical parameters it is tested if the input is a number; for character strings it is
only checked that the first character is a non–numeric character.

Using the plus sign (‘+’) as default value is another way to disable parameter type check-
ing. This is the correct way to test inside a procedure whether a certain parameter has
been entered or not, because it is impossible to distinguish between a parameter defaulted
to ‘?’ and an explicitly entered ‘?’ parameter. For an example see section 3.6.6.

The system keyword PARSTAT holds 8 flags (for P1,. . . ,P8) which are set to 1 or 0, if
the type of the ith parameter conforms to the specified type or not. If PARSTAT(i) is 0
for any i the MIDAS procedure is aborted.
However, if /C(ONTINUE) is appended to any of the types listed above, the keyword
PARSTAT will only be set to 0 or 1 and the execution of the procedure continues, leav-
ing it to the user to test PARSTAT(i) and decide how to go on.
So in our example above the command @@ exa2 KB will result in an error message and
the procedure is aborted.
If we change the procedure to:

!+
! Example 3, MIDAS procedure exa3.prg
!+
DEFINE/PAR P1 999 N/CONT "Enter first input number:"
IF PARSTAT(1) .EQ. 1 -
WRITE/KEY INPUTI/I/7/1 {P1} !store contents of P1 in INPUTI(7)

then @@ exa3 KB will not yield any error.
Note also the use of the continuation character (–) in the IF statement above.

The MIDAS command CROSSREF defines labels (of maximum 10 characters) for the
parameters P1,. . . ,P8 to enable cross-referencing of parameters if they are passed in arbi-
trary order.

Note

The command CROSSREF has to be the first executable command (i.e. any
command but a comment line) in a MIDAS procedure!

If we modify exa3.prg to:

1–November–1992

3–20 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

!+
! Example 4, MIDAS procedure exa4.prg
!+
CROSSREF IN FILE OUT FILE METHOD ALPHA
DEFINE/PAR P1 ? IMA "Enter name of input file: "
DEFINE/PAR P2 ? IMA "Enter name of result file: "
DEFINE/PAR P3 ? C "Enter method: "
DEFINE/PAR P4 999 NUM "Enter alpha value: " 22,1024
WRITE/KEY INPUTI/I/7/1 {P4}

then the following command lines will all be equivalent:

@@ exa4 in out FILTER 33
@@ exa4 P2=out P1=in P4=33 P3=FILTER
@@ exa4 OUT FILE=out IN FILE=in alpha=33 METHOD=FILTER

The labels may be truncated, so also

@@ exa4 OUT =out IN F=in al=33 METH=FILTER

is o.k.

If you do not know a parameter value at the time you execute a MIDAS procedure,
e.g. the value depends on the execution inside the procedure itself, use the command
INQUIRE/KEY in the procedure. The execution of the procedure is then interrupted and
the user is prompted for a value before continuing. For example,

!+
! Example 5, MIDAS procedure exa5.prg
!+
CROSSREF IN FILE OUT FILE
DEFINE/PAR P1 ? IMA "Enter name of input file: "
DEFINE/PAR P2 ? IMA "Enter name of result file: "
WRITE/KEY IN B " " all ! fill keyword IN B with blanks
INQUIRE/KEYW IN B "Which filter, enter LOW or HIGH: "

The command @@ exa5 old new will stop with the message
Which filter, enter LOW or HIGH:
and wait for user input. The 7th element of keyword AUX MODE will contain the number
of characters typed in response to the INQUIRE/KEY command (will be set to 0 if the user
just types Return).

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–21

3.6.2 Symbol Substitution in Command Procedures

As mentioned before, the Monitor performs symbol substitutions on MIDAS command
lines in the first pass by replacing symbol names in the command line with their cur-
rent value. For character symbols just the string is put in; for symbols of other types
the binary data are converted to ASCII using the formats specified in the SET/FORMAT
command. This substitution is iterated until no more symbol substitutions are possible.
Keywords, descriptors, pixel values of an image or elements of a table are valid symbols
in the MIDAS command language.

The following syntax is used to distinguish among keywords, descriptors, pixel values
and table elements:

{star} refers to the value stored in the keyword “star”
{galaxy,disk} refers to the contents of descriptor “disk”

of frame “galaxy.bdf”
{galaxy[x,y]} refers to the value of the image pixel at coordinate x,y

of the 2–dimensional frame “galaxy.bdf”
{dust,:particles,7} refers to the element of the table “dust.tbl”

in column labelled “:particles” and row 7
{dust,#2,77} refers to the element of the table “dust.tbl”

in the second column and row 77

Elements of numerical keywords with more than one element are specified like elements in
a FORTRAN vector, e.g. INPUTR(7). Also substrings of character keywords are indicated
as in FORTRAN, e.g. INPUTC(2:5). These features are also implemented for descriptors
but not for table entries (yet).

Let us look at an example of this:

!+
! Example 6, MIDAS procedure exa6.prg
!+
DEFINE/PAR P1 ? N "Enter alpha value: " -88.5,912.4
DEFINE/PAR P2 ? N "Enter loop count: " 1,999
WRITE/KEY VAR/R/1/1 0. ! init key VAR
VAR = {P1} * 3.3 ! set VAR to 3.3 ∗ (contents of P1)
!
LOOP: ! declare label LOOP
VAR = 1.+VAR ! set VAR = 1.0 + VAR
WRITE/OUT NAXIS = {myframe,naxis}
WRITE/OUT {myframe[@10,@20]}
WRITE/OUT {mytable,:DEC,@7}
IF VAR .LE. {P2} GOTO LOOP ! go to label LOOP,

! if VAR ≤ contents of P2

1–November–1992

3–22 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

Then the command @@ exa6 1.0 5.2 will yield:

NAXIS = 0002
3.456000E+00
-7.030000E+01
NAXIS = 0002
3.456000E+00
-7.030000E+01

assuming, that the image frame myframe.bdf is a 2–dimensional frame, the pixel value at
pixel coordinates [10,20] is 3.456 and the element at column labelled :DEC and row 7 of
table mytable.tbl is -70.3 .

Any algebraic expression using the operators +, −, ∗, / and parentheses (,) is sup-
ported by the command COMPUTE/KEY and its short form ‘key = expression’.

Note

For character keywords COMPUTE/KEY only supports character concatenation
(‘//’). If you want to write a character string into a character keyword, use
WRITE/KEY instead. Therefore, if we had written VAR = P1 * 3.3 instead of
VAR = {P1} * 3.3 in the procedure exa5.prg, MIDAS would have protested
because no multiplication is permitted for character keywords.

Since symbols may be tested in conditional statements and thus change the control flow of
a MIDAS procedure, they provide the link between application programs and the MIDAS
command language.
The number of characters used in the ASCII representation of a numerical symbol may
be controlled via the command SET/FORMAT I-format for integer symbols and
SET/FORMAT E-format (or F-format) for real and double precision symbols. Integer sym-
bols are then encoded via I–format (with leading zeroes not suppressed) and real or double
precision symbols as E–format or F–format:

!+
! Example 7, MIDAS procedure exa7.prg
!+
WRITE/KEY INPUTI 12 ! set INPUTI(1) to 12
WRITE/KEY INPUTR 12.345 ! set INPUTR(1) to 12.345
WRITE/KEY INPUTD 1234.5678 ! set INPUTD(1) to 1234.5678
WRITE/OUT {inputi(1)} {inputr(1)} {inputd(1)}
SET/FORMAT I2 ! use format I2.2 for integer symbols
SET/FORMAT E12.8 ! use format E12.8 for real/double symbols
WRITE/OUT {inputi(1)} {inputr(1)} {inputd(1)}
SET/FORMAT I5 ! use format I5.5 for integer symbols
SET/FORMAT F12.4 ! use format F12.4 for real/double symbols
WRITE/OUT {inputi(1)} {inputr(1)} {inputd(1)}

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–23

The command @@ exa7 will yield:

0012 1.23450E+01 1.23457E+03 default is I4 and E15.5
12 1.23450003E+01 1.23456780E+03 uses I2 and E12.8
00012 12.3450 1234.5678 uses I5 and F12.4

If you want to omit any leading zeroes for integer symbols use SET/FORMAT I1, then only
the necessary digits will be displayed.

Substitution begins inside the curly brackets, starting at the deepest nested level:

WRITE/OUT {IN A}{INPUTC(1:3)}
will display SPIRALABC on the terminal, if key IN A contains the string SPIRAL and key
INPUTC(1:3) the string ABC.
It is sometimes necessary to substitute symbols in a nested order:

!+
! Example 8, MIDAS procedure exa8.prg
!+
DEFINE/PAR P1 myframe IMA "Enter name for input frame: "
SET/FORMAT F5.1
WRITE/OUT {{P1},STEP(1)}

the command @@ exa8 will force the Monitor to substitute the last command line in
exa8.prg first to: WRITE/OUT {myframe,STEP(1)} and then yield: 20.5
assuming that descriptor STEP of myframe.bdf contains 20.5 as first element. This ex-
ample also illustrates the concept of recursive substitution.

3.6.3 DO Loops

Loops are supported in MIDAS procedures like the DO loops in FORTRAN (but note that
loops are always executed at least once):

!+
! Example 9, MIDAS procedure exa9.prg
!+
WRITE/KEY N/I/1/1 0 ! keywords serve as loop variables
DO N = 1 6 2 ! loop from N=1 until N≤6 in steps of 2
WRITE/OUT N = {N}

ENDDO

A keyword of integer type (called N in our example) must be used to store the loop
variable. The parameters follow the standard FORTRAN conventions with start (=1 in
exa9.prg), end (=6) and in/decrement (=2) values given as shown above. DO loops may
be nested up to 8 levels deep in a procedure.
Note, that ENDDO has to be written as one word!

The command @@ exa9 will yield

1–November–1992

3–24 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

N = 0001
N = 0003
N = 0005

Assume we have images imag0001.bdf to imag0100.bdf and want to add successive pairs
and store the results into images res0001.bdf to res0050.bdf:

!+
! Example 10, MIDAS procedure exa10.prg
!+
DEFINE/PAR P1 ? IMA "Enter root name for input frames: "
DEFINE/PAR P2 ? IMA "Enter root name for output frames: "
SET/FORMAT I4 ! we need 4 digits
WRITE/KEY N/I/1/1 0
WRITE/KEY NN/I/1/2 0,0
!
DO N = 1 50 ! default increment is 1

NN(1) = 2*N
NN(2) = NN(1)-1
COMPUTE/IMA {P2}{N} = {P1}{NN(2)}+{P1}{NN(1)} ! sum up
LOAD/IMA {P2}{N} ! display the result frame

ENDDO

Then, the MIDAS command @@ exa10 imag res will do the required task.

3.6.4 Local Keys

Because keywords are implemented as a global data structure, different MIDAS procedures
can access the same keyword. This useful feature can cause problems, however, if these
keywords just serve as local, temporary variables like the DO variables. Consider the
procedures below:

!+
! Example 11, MIDAS procedure exa11.prg
!+
WRITE/KEY N/I/1/1 0
DO N = 1 10

@@ test
ENDDO

!+
! MIDAS procedure test.prg
!+
WRITE/KEY N/I/1/1 0
DO N = 1 12

WRITE/KEY INPUTI/I/12/1 {N}
ENDDO

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–25

Executing @@ exa11 will give some unexpected results, since both procedures access the
same integer keyword N as a common variable.

Therefore, procedures should use local keys for DO loops and internal working storage.
Local keywords are defined inside a MIDAS procedure via the command DEFINE/LOCAL.
They are only known inside the procedure where they are defined and in procedures
called from this procedure. Local keywords may have the same name as an existing global
keyword (except the system keyword names as stored in MID MONIT:syskeys.dat) or local
keyword of any other procedure, since local keys are searched before the global ones. The
above example will work, if modified as follows:

!+
! Example 12, MIDAS procedure exa12.prg
!+
DEFINE/LOCAL N/I/1/1 0
DO N = 1 10
@@ test

ENDDO

!+
! MIDAS procedure test.prg
!+
DEFINE/LOCAL N/I/1/1 0
DO N = 1 12
WRITE/KEY INPUTI/I/12/1 {N}

ENDDO

Local keywords are deleted when returning to the next higher level at the end of a proce-
dure.

3.6.5 Conditional Statements, Branching

As in FORTRAN 77 any of the following forms of the IF statement may be used:

IF log exp command ! command = any MIDAS command
! with at most 4 params.

IF log exp THEN ! xyz = any logical expression
. . .

ELSEIF log exp THEN ! uvw = any logical expression
. . .

ELSE
. . .

ENDIF

1–November–1992

3–26 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

IF log exp THEN
. . .

ENDIF

IF blocks may be nested up to 8 levels deep in a procedure.
Note that the ELSEIF must be given as one word; ELSE IF will not work (the same holds
for ENDIF)!
The logical expression ‘log exp’ is of the form:

arg1 op arg2

where arg1, arg2 are either names of keywords (this includes also the names P1, ..., P8)
or constants, and op may be any of .EQ., .NE., .GT., .GE., .LT. or .LE. (with the same
meaning as in FORTRAN 77). As with symbol substitution, specify single elements of an
array and substrings via, e.g., OUTPUTI(7) and IN B(2:15).
If we do

WRITE/KEY INPUTC beer
WRITE/KEY OUTPUTC wine
WRITE/KEY INPUTR/R/1/3 1.,2.,3.

Then,

INPUTC .EQ. "beer" is TRUE
INPUTC .EQ. "BEER" is also TRUE
INPUTC .EQ. OUTPUTC is FALSE
INPUTC(2:2) .EQ. OUTPUTC(4:4) is TRUE
INPUTR(2) .GT. 5.4 is FALSE

In string comparisons upper and lowercase characters are not distinguished in order to
guarantee case insensitivity.
Character keywords can only be compared to character keywords or character constants
(which are enclosed by double quotes). This can become tricky in conjunction with symbol
substitution:

!+
! Example 13a, MIDAS procedure exa13a.prg
!+
DEFINE/PAR P1 ? N "Enter number: "
IF {P1} .EQ. 1 THEN
WRITE/OUT P1 = 1

ELSE
WRITE/OUT P1 is not = 1

ENDIF

Entering @@ exa13a 1 as well as @@ exa13a 001 will give the expected output message
P1 = 1 since the line IF {P1} .EQ. 1 THEN has been converted in the first pass by the

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–27

Monitor to
IF 1 .EQ. 1 THEN or IF 001 .EQ. 1 THEN
and the two integer constants are equal. Now, consider the almost identical procedure
exa13b.prg:

!+
! Example 13b, MIDAS procedure exa13b.prg
!+
DEFINE/PAR P1 ? N "Enter number: "
IF P1 .EQ. 1 THEN
WRITE/OUT P1 = 1

ELSE
WRITE/OUT P1 is not = 1

ENDIF

Entering @@ exa13b 1 will return the error message invalid IF statement... and
abort. Why?
Well, in the IF statement above the contents of the character keyword P1, which is the
character ‘1’, is compared to the integer constant 1, an invalid comparison.
We modify the procedure once more:

!+
! Example 13c, MIDAS procedure exa13c.prg
!+
DEFINE/PAR P1 ? N "Enter number: "
IF P1 .EQ. "1" THEN
WRITE/OUT P1 = 1

ELSE
WRITE/OUT P1 is not = 1

ENDIF

Now, entering @@ exa13c 1 will work and yield P1 = 1 but @@ exa13c 001 will output
P1 is not = 1 since the string ”001” is not equal to ”1”.

As another example let us see, how we can check if a parameter has been entered at
all:

!+
! Example 14a, MIDAS procedure exa14a.prg
!+
DEFINE/PAR P6 + NUMBER "Enter first input number: "
IF P6(1:1) .EQ. "+" THEN
WRITE/KEY INPUTC NONE ! no P6 entered, set INPUTC accordingly

ELSE
WRITE/KEY INPUTI/I/7/1 {P6} ! store contents of P6 in INPUTI(7)
WRITE/KEY INPUTC YES !indicate, that INPUTI holds a valid number

ENDIF

1–November–1992

3–28 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

However, if we also want to check the limits of the given number we have to use the
DEFINE/PAR command again, because testing ”+” against a numerical interval would lead
to an error:

!+
! Example 14b, MIDAS procedure exa14b.prg
!+
DEFINE/PAR P6 + NUMBER "Enter first input number: "
IF P6(1:1) .EQ. "+" THEN
WRITE/KEY INPUTC NONE ! no P6 entered, set INPUTC accordingly

ELSE
DEFINE/PAR P6 + NUMBER "Enter first input number: " 22,1024
WRITE/KEY INPUTI/I/7/1 {P6} ! store contents of P6 in INPUTI(7)
WRITE/KEY INPUTC YES !indicate, that INPUTI holds a valid number

ENDIF

Since, in the ELSE branch we know that parameter P6 is given, the default value ”+” itself
is never tested against the interval [22,1024].

For testing multiple alternatives use the BRANCH command. It has the syntax:
BRANCH variable casea,caseb,...,casez labela,labelb,...,labelz.

!+
! Example 15, MIDAS procedure exa15.prg
!+
DEFINE/PARAMETER P1 ? C "Enter method: "
!
! Use the first 2 characters of parameter P1 to distinguish the methods
BRANCH P1(1:2) AN,DI,HY ANALOG,DIGIT,HYBRID
!
! fall through if no match ...
WRITE/OUT Invalid option - please try again
RETURN
!
ANALOG:
RUN ANALO
RETURN
!
DIGIT:
RUN DIGI
RETURN
!
HYBRID:
RUN HYBRI

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–29

Then, @@ exa15 ANALOG will execute the command RUN ANALO and @@ exa15 digital or
@@ exa15 di will run the program digi.exe.

3.6.6 Special Functions

Special functions may be used in the context of COMPUTE/KEY. The existing functions are
listed in the following table (on the next page). Note, that arg1, arg2 may either be the
name of a keyword, the contents of which are used, or a constant. Character constants
have to be enclosed in double quotes to distinguish them from a keyword name.
The table on the following page contains all functions available.
On–line help for these functions is available via HELP COMPUTE/KEY.

As an example we want to check whether a table file name has been input with or
without the file extension .tbl ; if not given we append the type inside the procedure:

!+
! Example 16, MIDAS procedure exa16.prg
!+
DEFINE/LOCAL INDX/I/1/1 0
COMPUTE/KEY INDX = M$INDEX(P1,".tbl") ! test, if type of a table

! already given
IF INDX .EQ. 0 THEN
WRITE/KEY IN A {P1}.tbl ! if not, append type

ELSE
WRITE/KEY IN A {P1} ! if yes, no need to append type

ENDIF

The MIDAS command @@ exa16 mytable as well as @@ exa16 mytable.tbl will both
fill the character keyword IN A with the string ‘mytable.tbl’.
The MIDAS procedure verify3 shows the usage of all currently available functions. Enter
@ vericopy to copy this procedure into your current directory (also the usage of verify3
will be shown then).

1–November–1992

3–30 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

Command Description

M$ABS(arg1) returns the absolute value of integer/real/dou ble arg1 as
integer/real/double

M$EXIST(arg1) returns 1 or 0, depending on whether the file arg1 exists or not
M$EXISTD(arg1,arg2) returns 1 or 0, depending on whether the descriptor arg2 of

frame arg1 exists or not
M$EXISTK(arg1) returns 1 or 0, depending on whether keyword arg1 exists or

not
M$INDEX(arg1,arg2) returns index of string arg2 in string arg1 as integer value (same

as function INDEX of FORTRAN 77)
M$LEN(arg1) returns length of character string arg1 (omitting trailing

blanks)
M$NINT(arg1) returns nearest integer of real/double ar g1
M$SYMBOL(arg1) returns the translation of DCL symbol (VMS) or environment

variable (Unix) arg1 as a character string
M$LOWER(arg1) returns character string arg1 in lower case
M$UPPER(arg1) returns character string arg1 in upper case
M$TSTNO(arg1) returns 1 or 0 depending on whether string arg1 is a number

or not
M$TIME() returns the current date and time as an ASCII string of

24 characters
M$SECS() returns the current time as no. of seconds elapsed since 1st

Jan. 1970 (as an integer)
M$LN(arg1) returns natural logarithm of real/double arg1
M$LOG(arg1) returns logarithm (base 10) of real/double ıt arg1
M$EXP(arg1) returns exponential of real/double arg1 (base e)
M$SIN(arg1) returns sine of real/double angle arg1 (angle in degrees)
M$COS(arg1) returns cosine of real/double angle arg1 (angle in degrees)
M$TAN(arg1) returns tangent of real/double angle arg1 (angle in degrees)
M$ASIN(arg1) returns arcsine of real/double arg1 in d egrees
M$ACOS(arg1) returns arccosine of real/double arg1 in degrees
M$ATAN(arg1) returns arctangent of real/double arg1 i n degrees
M$SQRT(arg1) returns square root of real/double arg1

Table 3.2: Special Functions available for operations on keys

1–November–1992

3.6. MIDAS COMMAND LANGUAGE 3–31

3.6.7 Interrupting Procedures

Sometimes, it may be necessary to interrupt the execution of procedures. One way to do
this is via the command INQUIRE/KEYWORD which was already discussed before; depending
upon the user input the procedure could continue or stop. But while the procedure is
waiting for input, MIDAS is blocked, that is no other command can be executed.
With the command PAUSE a procedure is stopped and saved; MIDAS returns to the inter-
active level and you can execute any other command. To resume the stopped procedure
at a later time, enter CONTINUE. Then the procedure continues with the next command
after the PAUSE line. Only one procedure can be in the ‘PAUSEd’ state at a time, in other
words it is not possible to stop and save several procedures together.
As an example, consider the case where after some tricky operations on an image you want
to get a grayscale copy of the result on a Postscript Laser printer. Since the grayscale plot
is quite a time consuming operation you want to make sure that the frame is really o.k.
before sending that job to the printer queue.

!+
! Example 17, MIDAS procedure exa17.prg
!+
DEFINE/PAR P1 ? IMA "Enter input frame: "
DEFINE/PAR P2 ? IMA "Enter output frame: "
WRITE/KEY IN A {P1}
DEFINE/LOCAL MYRESULT/C/1/80 {P2}
RUN tricky.exe
PAUSE
!
INQUIRE/KEY INPUTC "Result frame o.k.? Enter YES or NO: "
IF INPUTC(1:1) .EQ. "Y" THEN
ASSIGN/DISPLAY LASER
LOAD/IMAGE {MYRESULT}

ENDIF

With @@ exa17 venus jupiter the procedure will start the program tricky to operate
on venus.bdf and produce the frame jupiter.bdf, and then it will stop. Now, you can
check the result by e.g. calculating the statistics of jupiter.bdf or simply displaying it.
Then, resume the procedure via CONTINUE and type YES if you are satisfied with the result
and want the hardcopy or NO if not.
Note also, that we used a local keyword to hold the name of the result frame and not the
usual keyword OUT A. Thus we are sure that the result name is not accidentally overwritten
by another command which also uses OUT A.

1–November–1992

3–32 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

3.6.8 Entry points

It is sometimes desirable to group several related procedures into a single file. In MIDAS,
the ENTRY command defines entry points for different procedures in the same file. These
individual procedures are executed by specifying also their entry point besides the file
name in the ‘@@’ command.

!+
! Example 18, MIDAS procedure exa18.prg
!+
DEFINE/PAR P1 11 NUMBER "Enter input number: "
WRITE/OUT "Parameter 1 = {P1}"
!
ENTRY 2
DEFINE/PAR P1 new C "Enter input: "
WRITE/OUT "Parameter 1 = {P1}"
!
ENTRY third
DEFINE/PAR P1 spiral IMA "Enter input image: "
WRITE/OUT "Parameter 1 = {P1}"

The string following the ENTRY command (max. 8 characters) is used in the ‘@@’ command
to select the code segment in the file exa18.prg. Thus, @@ exa18,2 old will result in
the display of the line: ‘Parameter 1 = old’; the following ENTRY statements indicates
the end of this code segment and acts like a RETURN statement. Entering @@ exa18,third
produces the output: ‘Parameter 1 = spiral’; and @@ exa18 -12 will execute the lines
with no preceding ENTRY statement, i.e. write: ‘Parameter 1 = -12’. This example also
shows that parameter P1 is not global, that means it has to be defined in each ENTRY
segment of the procedure file.
Entries may also be used to structure the contents of a MIDAS procedure. In the following
example, the procedure exa18.prg executes different code segments according to its first
parameter.

!+
! Example 19, MIDAS procedure exa19.prg
!+
DEFINE/PAR P1 000 C "Enter control flags for entries: "
DEFINE/PAR P2 sombrero IMA "Enter image to work with: "
!
DEFINE/LOCAL LOOP/I/1/1 0
DEFINE/LOCAL CCC/C/1/3 {P1(1:3)}
SET/FORMAT I1
DO LOOP = 1 3

1–November–1992

3.7. CONTEXT LEVELS 3–33

IF CCC({LOOP}:{LOOP}) .EQ. "1" @@ exa19,000{LOOP} {P2}
ENDDO
!
! here the different sub-procedures
!
ENTRY 0001
!
CREA/IMA {P1} 2,256,256 ? gauss 128.5,128,128.5,128
!
ENTRY 0002
!
READ/DESCR {P1}
!
ENTRY 0003
!
STATIST/IMAGE {P1}

Then, to read the standard descriptors of image frame luna.bdf we would enter the com-
mand @@ exa19 010 luna; to create the frame sol.bdf we enter @@ exa19 100 sol.
Finally, in order to create a gaussian image estrella.spc, and read its standard descrip-
tors and do the statistics on the newly created image, we type the command
@@ exa19 111 estrella.spc.

3.7 Context Levels

Besides the fixed (general) MIDAS commands, the user may dynamically create new com-
mands anytime during a MIDAS session. Context files provide a way to group commands
which relate to a specific reduction sequence or application package.

For example, the command SET/CONTEXT applic1 will execute the MIDAS procedure
applic1.ctx, which would contain all the new command definitions for the application
package applic1 as well as any new keyword definitions and default settings.
Each enabled context has a corresponding context no. which links new commands to the
context in which they were created. The command ‘SHOW/COMMANDS’ displays all
additional MIDAS commands together with their context no. The context no. 0 is used
for all commands which are created outside a given context.

Once the user has finished his/her data reduction with applic1, he/she may want to work
with package applic2 on some of his/her data as well. One could either add all commands
of applic2 on top of the ones from applic1 or first remove all the commands from the
currently enabled context, i.e. applic1, in one go via the command CLEAR/CONTEXT.
SET/CONTEXT applic2 will then create all the new commands of the package applic2.

1–November–1992

3–34 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

Use SHOW/CONTEXTS to display all the currently enabled contexts.
Up to 8 different contexts may be enabled at any time (assuming that all enabled com-
mands fit in the MIDAS command table).
Some of the currently available contexts (application packages) are:

cloud Model for absorption lines
daophot Object detection and classification, the DAOPHOT-2 package
echelle Reduction of echelle spectra
exsas (*) Analysis of X-ray data from the ROSAT satellite
iue (*) IUE-tape reader
geotest Utilities to create geometric test frames and other artificial images
imres Programs related to image restoration
invent Object detection and classification, the INVENTORY package
long Reduction of long slit spectra
optopus Package to prepare observations with the

fibre Optopus facility at La Silla
pisco Reduction package for data obtained with the PISCO

instrument at La Silla
romafot Photometric extraction package, the ROMAFOT software
spec Package for 1-dim spectra
statist Statistical tests on tables
surfphot Deconvolution and rebinning

For example, the command SET/CONTEXT invent will activate the commands related to
the INVENTORY photometric package.
HELP [CONTEXT] will display all currently available contexts at your site.

Note

The contexts exsas and iue have been developed at the Max Planck Institute for
Extraterrestrial Physics in Garching, Germany and ESA Vilspa, Villafranca
Satellite Tracking Station, Spain, respectively. They may be obtained on request
from these institutions.

3.8 Running a Program within MIDAS

To execute a user–written MIDAS application program (coded in FORTRAN or C), em-
ploy the command RUN. The command RUN MYPROG or RUN myprog will execute myprog.exe
in a subprocess like any other MIDAS command.
It is better practice to embed the command RUN MYPROG in a MIDAS command procedure.
Typical tasks of this procedure would be to provide default values for all parameters, to
check the validity of parameter values, and to store the parameters into the keywords your
program will use.

1–November–1992

3.8. RUNNING A PROGRAM WITHIN MIDAS 3–35

Let us assume you have written your special filter program and stored the executable
module as bestfilt.exe on disk. Program bestfilt just needs the names of the input
and output image which are obtained inside the program from the keywords IN A and
OUT A .
The following MIDAS procedure:

!+
! MIDAS procedure bestfilt.prg
!+
CROSSREF INPUT RESULT
DEFINE/PARAMETER P1 ? IMA "Enter input frame: "
DEFINE/PARAMETER P2 ? IMA "Enter output frame: "
!
WRITE/KEY IN A {P1}
WRITE/KEY OUT A {P2}
RUN BESTFILT ! .exe is the default type

will check, that the two parameters are valid MIDAS file names and prompt for input if
any parameter is not given. Together with the MIDAS command

CREATE/COMMAND BESTFILT/IMAGE @@ bestfilt

your application will then be integrated smoothly into MIDAS.
Now, you can apply your own filtering algorithm to the image lobo.bdf by typing e.g.
BESTFILT/IMA res=perrito in=lobo.

3.8.1 Debugging of Procedures and Modules

Normally, the command lines of a MIDAS procedure are not displayed on the terminal.
To control the display of the lines of a MIDAS procedure, use the command ECHO. With
ECHO/ON the lines of a MIDAS procedure are displayed on the terminal as they are read
from the file and executed. This way, it is possible to get an impression of how much time
various parts of a procedure need.
With ECHO/FULL the lines are displayed as they are read and if symbols have to be sub-
stituted, the lines are again displayed after substitution. To avoid echoing and return to
a silent mode, enter ECHO/OFF.
The ECHO command has as parameter the procedure-level-interval where it should be ap-
plicable. Thus you can, e.g., display only the lines of a MIDAS procedure executing at
level 2, etc. Echoing each command line of a MIDAS procedure will identify most of the
syntax and other obvious errors. However, this may not be sufficient for long and compli-
cated procedures.
For these cases use the Midas Command Language Debugger:

DEBUG/PROCEDURE levla,levlb ON/OFF !en/disable procedure debugging
DEBUG/MODULE levla,levlb ON/OFF !en/disable module (F 77, C) debugging

1–November–1992

3–36 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

SHOW/CODE comnd/qualif !display the code of related procedure

Once procedure debugging is switched on, e.g., via DEBUG/PROC 1,3 ON, all MIDAS pro-
cedures executing at level 1, 2 or 3 start up in stepwise debugging mode. The prompt
changes to Mdb and each command line is displayed on the terminal, and only executed
when you hit Return . Furthermore, a set of basic debugging commands may be exe-
cuted, e.g. listing the preprocessed procedure code, setting and clearing break points, and
switching from stepwise to continuous mode. Also the keywords may be inspected at any
moment. This is an important tool because local keywords cannot be checked otherwise;
once the procedure terminates, all local keywords disappear.

When you are in the debugger (indicated via the Mdb prompt), use the command ‘h’
(for HELP) to display all the available debug commands.
To switch the debugging mode for procedures off, use DEBUG/PROC 1,3 off.

If you must debug your application program, first compile and link that program with
the debugger of your host system. Make sure, that this is the same debugger as the one
stored in a system keyword of MIDAS (via the command SET/MIDAS SYSTEM debug=...).
Enter the command DEBUG/MODULE to switch on the debugging mode for applications. Sub-
sequently, your application (as well as all other programs activated via the MIDAS RUN
command) will be started with the debugger of your system and you can debug it in the
usual way.

Note

Typing $dbx myprog.exe (e.g. on a SUN) would also start up program myprog.exe

in debug mode. But that would not tie the application into the MIDAS envi-
ronment, i.e. the keywords would not be set correctly.

If you just want to list the preprocessed code of a MIDAS procedure use the command
TRANSLATE/SHOW proc.
The command SHOW/CODE comnd/qualif will display the code of the procedure which is
actually executed when you enter comnd/qualif as a MIDAS command.

Note

For a detailed description of the integration of user applications into MIDAS
see the MIDAS Environment Document.

3.9 Catalogs in MIDAS

MIDAS catalogs are best described as a list/collection of one of the supported data struc-
tures, e.g. Images, Tables or Fit files. Catalogs are implemented as ASCII files with
the file type .cat. A MIDAS catalog has entries either for images or tables or fit files
currently existing in MID WORK and is then referred to as an Image, Table or FitFile

1–November–1992

3.9. CATALOGS IN MIDAS 3–37

catalog, accordingly. If a catalog is enabled (via SET/ICAT, SET/TCAT, SET/FCAT), new
entries are added automatically whenever new frames are created, otherwise entries in a
catalog have to be explicitely created via ADD/ICAT, ADD/TCAT, etc.
Frames that are listed in a catalog may then be referenced by their name, as well as via
#n, if n is the entry no. of the frame in the currently enabled catalog, or #n,cat name if
the entry is in catalog cat name.cat (only one catalog of each type can be enabled at any
one time).

The following commands are related to the use of catalogs:

CREATE/xCAT cat name dir specs x = I, T, F for images, tables, fit files
create catalog cat name for images/tables/fit files, using dir specs,
which are the options of the host commands DIRECTORY (VMS) or ls (UNIX).

SET/xCAT cat name; CLEAR/xCAT
enable/disable automatic addition of entries for images/ tables/fit files in MID WORK
to catalog cat name

READ/xCAT cat name low,hi
display all entries of image/table/fit file catalog cat name within given range [low,hi]

ADD/xCAT cat name frame list
add image/table/fit file entry(ies) specified in frame list to catalog cat name

SUBTRACT/xCAT cat name frame list
remove entry(ies) from image/table/fit file catalog cat name

EXECUTE/CATALOG proc P1 P2 ... P7
execute the MIDAS procedure proc which was written for a single frame
for all frames in a catalog (this command currently only implemented for image catalogs).

3.9.1 Using Catalogs in MIDAS Procedures

Assume we have written a specific application program, pearl, within the MIDAS envi-
ronment, that processes an input image and produces some numbers as a result. We would
like this program also to work on a sequence of images, not just on one input image:

!+
! Example 20, MIDAS procedure exa20.prg
!+
DEFINE/LOCAL CATAL/I/1/1 0 ! define local key CATAL
!
LOOP:

1–November–1992

3–38 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

STORE/FRAME IN A {P1} ! fill key IN A with parameter 1
RUN pearl ! run our application
GOTO LOOP

If P1 contains the name of an image, the command STORE/FRAME works exactly
like WRITE/KEY. The keyword CATAL is not modified.
However, if P1 contains the name of a catalog of the form file.cat, this catalog (which has
to contain images) is opened and the first entry in the catalog is stored into the keyword
IN A.
The number of the next entry is saved in the keyword CATAL (so this name is fixed!). In
the loop, the entry number is taken from CATAL and the corresponding frame name put
into keyword IN A (in our example). If there are no more entries in the catalog, control is
either transferred to a label which may be specified in the command line of STORE/FRAME
or if not given, the procedure is terminated.
So @@ exa20 myframe will work on the single frame myframe,
whereas @@ exa20 mycatal.cat works on all frames with entries in the image catalog
mycatal.cat.

If the program pearl produces also output frames, you should not have the catalog enabled
(cf. SET/ICAT command). Because each new frame gets added to the enabled catalog and
you would end up with an infinite loop!

Furthermore you may write your application and procedure just to work on single frames
and then execute this procedure on all frames in a catalog via the command EXECUTE/CATALOG.
Note that you have to set up some special keywords in advance for that; see the HELP of
EXECUTE/CATALOG.

3.10 Adapting MIDAS to your personal needs

There are commands in MIDAS which help you in tailoring MIDAS to your personal taste
and needs.
Maybe the most important one is CREATE/COMMAND with which you can add abbreviated
and alias command names. As a next step, try out CREATE/DEFAULTS in order to set
up your own defaults for frequently used commands, e.g. size and location of display
and graphics windows in an X11-environment. The command SET/MIDAS SYSTEM has an
extended set of options to let you change internal MIDAS features, ranging from selecting
your preferred text editor (to be used e.g. in REPORT/PROBLEM) to choosing your own
MIDAS prompt. With the command SET/BUFFER you modify the size of the internal
command buffer.
If you have a MIDAS command procedure named ‘login.prg’ in the directory specified
by MID WORK, this procedure will be automatically executed whenever you get into
the MIDAS environment, i.e. when you type INMIDAS (inmidas) or GOMIDAS (gomidas).
Therefore, the procedure login.prg is the place where you should put all the commands
needed to adapt MIDAS.

1–November–1992

3.11. MIDAS USER LEVELS 3–39

!+
! MIDAS procedure login.prg
! personal set up file for A. S. Tronomer 930115
!+
CREA/COM RK READ/KEY !define abbreviations
CREA/COM WK WRITE/KEY
CREA/COM RD READ/DESCR
CREA/COM WD WRITE/DESCR
CREATE/COMM XH CREATE/GUI HELP
CREA/COM SMOOTH/SPECIAL @@ mysmooth !define a new command
!
CREATE/DEF CREATE/GRAPH ? 400,800 !size for graphic window
CREATE/DEF CREATE/DISP ? 600,600,400,400 !size+loc for display window
!
SET/MIDAS SYS edit=vi user=user
SET/MIDAS SYS prompt=Mid{mid$sess(11:12)}

Assuming you are working with MIDAS unit 22, this procedure will change the MIDAS
prompt to Mid22, use ‘vi’ as editor when you run the REPORT/PROBLEM command, define
the commands RK, WK, RD, WD, XH, SMOOTH/SPECIAL, and override the preset defaults
for CREATE/GRAPHICS, CREATE/DISPLAY. Also, the user level is set to USER; cf. the fol-
lowing section.

3.11 MIDAS User Levels

Three different user-levels are maintained within the MIDAS system.

NOVICE (beginning MIDAS user)
USER (normal MIDAS user)
EXPERT (expert MIDAS user)

These user-levels are set via the command SET/MIDAS SYS user=level, e.g. SET/MIDAS
us=EXPERT.
The level NOVICE is the default level assigned to you when getting into MIDAS.
The following functions of the MIDAS system are affected by the user-level:

HELP facility:
Help text for NOVICE- and USER- level MIDAS users is limited to the screen size of the
terminal, i.e. you have to hit Return to scroll through the help text, if it is longer than
single screen size.
For EXPERT users the help text is typed out completely.

ERROR reporting:
For NOVICE- and USER- level MIDAS users the full error text is displayed.
For EXPERT users only one-line error messages are displayed.

1–November–1992

3–40 CHAPTER 3. MONITOR AND COMMAND LANGUAGE

CREATE/COMMAND command:
EXPERT users may create commands which override already existing MIDAS commands
(be careful . . .).
All other users may only create “new” commands.

Note

Currently, there is no difference between the level NOVICE and USER, but
this may change in a future release of MIDAS.

1–November–1992

Chapter 4

Data Structures

This chapter will contain information on the data structures used in MIDAS such as keys
(keywords), descriptors, frames (bulk data frames), catalogs, and tables.

At the present moment we refer the reader to the previous chapter 3 which gives a
basic description of data structures used.

4–1

4–2 CHAPTER 4. DATA STRUCTURES

15–January–1988

Chapter 5

Table File System

This Chapter describes the structure and use of tables in the MIDAS system. Section 5.1 is
a general introduction. The table structure is outlined in section 5.2. Different functional
aspects of the tables are described in sections 5.3 (Input/Output), 5.4 (Management)
and 5.5 (Operations). A review of the commands is given in section 5.6, a more detailed
explanation is included in appendix A. Section 5.7 describes format files to control in-
put/output operations. Finally, section 5.8 contains an example that can be run at a
terminal with graphic capabilities as TUTORIAL/TABLE.

5.1 Tables in Image Processing

The purpose of image processing systems is to extract information from image data. Sys-
tems which are designed to treat large numbers of images must also be able to analyse the
data extracted from the images. The standard Database Management Systems (DBMS)
provide many of the facilities needed; however, some of the desired interactive graphics,
statistics, and mathematics are not always available. Therefore, a dedicated table system
has been made to serve these purposes in MIDAS (Grosbøl and Ponz, 1985, Mem.S.A.It.,
56, 429).

The use of tables can be divided into three main categories: internal, external, and
user applications. One of the advantages of the MIDAS Table System (MTS) is that tables
for these different purposes have the same structure and can be treated with the same set
of routines. The three categories are discussed separately, although there is some overlap
in the applications.

Internal tables are mainly used by MIDAS to compute transformations which later will
be applied to images. Typical examples are dispersion relations, characteristic curves
and coordinate transformations.

External tables: During a reduction procedure, data from external catalogs or data base
may be needed. This information can be made available by transferring them to the
MTS format. Examples are given: catalogs of photometric data which can be used to

5–1

5–2 CHAPTER 5. TABLE FILE SYSTEM

establish transformations from internal magnitudes to a standard photometric system,
or astrometric catalogs for computations of accurate reference frames for images.

User tables are used for storage of values computed during the reduction (e.g. stellar
magnitudes, line intensities, or isophotal diameters of galaxies). This provides an easy
way to save such heterogeneous data in a computer readable format. Further, the
user can investigate the properties of the data (e.g. distributions and correlations of
different values, and so on).

5.2 Structure of Tables

Table data are arranged in columns and rows, and stored in MIDAS files with the extension
.tbl. The entry at a given row and column may be either a single value or an array. The
items in one row may describe different properties of the same object or feature. All
elements in a given column must be of the same type and thus be associated with the
same property. For instance, a table with stellar data could contain the following items
in each row: identification, right ascension, declination, magnitude, and spectral type.
The first column would then contain all the stellar identifications, the second the right
ascensions, etc.

The supported column data types are numerical data (8/16/32-bit integers or 32/64-bit
reals) and character strings.

Each column is tagged with a user-defined label, a display format and optional physical
units and can be referred to either by its absolute number or its label.

An item in a table is accessed by giving its column and row in addition to the table
name. The row number can either be given as an absolute value (i.e. the sequence number)
or indicated by the value in a previously defined reference column.

In addition to the normal columns all tables contain a SELECT and a SEQUENCE column:

• The SELECT column enables the user to define and work with a subset of his table
by flagging the rows that satisfy a selection criteria. The subtable will be used by
commands that do not modify the table information whereas the selection flag will
be reset by commands that modify table information and this before taking any
action. The values of this column can be accessed in the COMPUTE command by
using the name SELECT (short form SEL).

• The SEQUENCE column contains the sequence number of each row. The values of this
column can be accessed in the COMPUTE command by using the name SEQUENCE
(short form SEQ).

If an element is not defined it will be a NULL entry and will be listed as a ”*” for all
data types except for character strings. In that case it will be listed as an empty field.

The tables may be physically stored on disk in two formats: by records corresponding
to the natural way of storing sequentially the rows and transposed , where all the values of
a given column are stored together(default mode). A table can be always expanded in the
sense that its number of columns and rows is automatically increased when the allocated
space is exceeded.

1–November–1992

5.3. INPUT/OUTPUT OF TABLES 5–3

5.3 Input/Output of Tables

The exchange of table data to and from the MTS is mainly done through standard ASCII
files. This makes it easy for any program to get data from the MTS and to transfer data
into it. Thus, output files from text editors and Database systems containing table data
in a fixed format can directly be transferred into the MTS format.

Conversion between the ASCII data file and the table is defined by a format file (see
section 5.7). If the format file does not exist, the conversion is done automatically via
list-direct input in free format. In this case only REAL*4 and integer data, without NULL
values are allowed.

Command Description

CREATE/TABLE Convert from ASCII files to MTS format
PRINT/TABLE Transfer MTS information to the ASCII file assigned as output.

The printer is used by default.

Table 5.1: Conversion between ASCII Files and MIDAS Tables

Normally, table files should be copied to magnetic tape in the FITS format for tables
(Harten et al., 1985, Mem.S.A.It., 56, 437) to make it easy to read them again on other
computers. The conversion to FITS is done by the MIDAS command OUTTAPE; FITS
tables are loaded onto disk by the command INTAPE.

5.4 Management of Tables

The management of tables is divided into four tasks: defining, displaying, modifying and
interactive editing of tables. The commands that define or modify a table will update its
descriptor HISTORY. As the length of this descriptor is limited, if you are doing a lot of
operations on the same table, you may get a descriptor overflow. In that case you can
turn off the automatic addition of history lines by adding an integer descriptor named
HISTORY UPDA to the table and setting it to 0.

5.4.1 Definition of Tables

External tables are created as described in the previous section and the definition of their
content is taken from the format file specified. To create a user table one can also use the
CREATE/TABLE command by giving NULL as input. This will create a table of the specified
size where all elements are NULL. Columns in a table can be created or deleted by using the
commands CREATE/COLUMN and DELETE/COLUMN. The available commands are collected in
Table 5.2. Some commands use internal tables to store results. In such cases the tables
will be created and defined by the system according to defaults. Labels, display formats
and units in an existing column are modified by the NAME/COLUMN command.

1–November–1992

5–4 CHAPTER 5. TABLE FILE SYSTEM

Command Description

CREATE/TABLE Create a table with specified size.
CREATE/COLUMN Create a column.
DELETE/COLUMN Delete column(s).

Table 5.2: Commands to Define Tables

5.4.2 Displaying Tables

Both the table parameters and the elements values can be displayed. The former are shown
using the SHOW command Table values are listed out by the PRINT and READ commands,
the output formatting being done using the display format associated with each column.
Supported formats are Fortran-77 standard formats and special display formats to accom-
modate sexagesimal and time values. Finally table values can be plotted on a graphic
device or display unit using the PLOT or OVERPLOT and LOAD command respectively. A list
of these commands is given in Table 5.3.

Command Description

SHOW/TABLE Show table characteristics
PRINT/TABLE Print elements in table
READ/TABLE Read elements in table and display them on the terminal
PLOT/TABLE Plot table elements on graphic device
OVER/TABLE Plot table elements on top of a previous plot on the graphic

device
LOAD/TABLE Load table elements on the overlay plane of the display

Table 5.3: Commands to Display a Table

5.4.3 Modification of Tables

Elements in a table can be inserted, changed, and deleted. These functions are all per-
formed by the WRITE/TABLE or COPY commands (See Table 5.4). The element to be
modified must be defined by giving its column and row location. An element is deleted if
the value is set to NULL. A whole row is considered deleted if the element in the reference
column is NULL. The data type of a column cannot be changed once the column has been
created. However, the command COPY/TT can be used to copy and convert the values of a
column of a certain type into a column of an another type.

It is possible to define a “subset” of a table by the SELECT command. All commands
that do not change a table element will only use the subset selected. By selecting ALL the
whole table is selected.

1–November–1992

5.4. MANAGEMENT OF TABLES 5–5

Command Description

WRITE/TABLE Write value into a table element.
COPY/KT Copy a keyword into a table element.
COPY/TK Copy a table element into a keyword.
COPY/TT Copy columns values into another column.
COPY/TI Transform the format of the file from table into image.
COPY/IT Transform the format of the file from image into table.

Table 5.4: Commands to Modify a Table

It is also possible to transfer data from one table to another. The four commands
described in Table 5.5 can be used. Interactive identification of table entries is done with

Command Description

COPY/TT Copy all selected elements with identical reference values.
COPY/TABLE Copy all selected elements from one table into another.
MERGE/TABLE Merge common columns in several tables.
PROJECT/TABLE Copy a set of columns from one table into another.

Table 5.5: Commands to Transfer Table Data

the command IDENTIFY/xxx, where xxx is CURSOR for the image display and GCURSOR
for the graphic screen.

5.4.4 Interactive Editing of Tables

An interactive editing facility EDIT/TABLE exists in MIDAS to create and modify tables.
The editor works in a “page–oriented” form, a “page” consisting of 20 rows and several
columns to fill the screen format, using a Keypad mode or a command mode to perform
the editing functions. The command mode is accessible by hitting CNTL-Z. Most of the
editing functions are implemented on the right keypad of the keyboard (Table 5.2) as well
as on the left keypad if it exists (e.g on Sun workstations). Some keys of the central
keyboard are also recognized (Table 5.7). The functions only available in command mode
are listed in Table 5.6

1–November–1992

5–6 CHAPTER 5. TABLE FILE SYSTEM

Command Description

EXIT to finish the editing session and produce the edited table
QUIT to finish the editing session without producing the output table

Table 5.6: Table Editor COMMAND Functions

Command Description

Tab put the cursor in the next column field.
Return next row.
Delete delete previous character.
Backspace move the cursor to beginning of line.

Cursor Arrows move the cursor ↑, ↓, ←, or →.

Table 5.7: Layout of the Table Editor Central Keypad

1–November–1992

5.4. MANAGEMENT OF TABLES 5–7

Page

(L1)

Command

Next
(L2)

Find

Advance
(L3)

Bottom

Backup

(L4)

Top

Right P

(L5)

Left P

Crea Col
(L6)

Del Col

Word
(L7)

Show

Change

(L8)

Sort

Line
(L9)

Screen

Row
(L10)

Status

(F1)
Gold

H Keypad

(F2)
H Functions

Figure 5.1: Layout of the Table Editor Left Keypad

Page

(KP 7)

Command

Section
(KP 8)

Right P

(KP 9)

Left P

Advance
(KP 4)

Bottom

Backup

(KP 5)

Top

Crea Col
(KP 9)

Del Col

Word
(KP 1)

Show

Eol
(KP 2)

Change

(KP 3)

sort

Line
(KP 0)

Screen

Row
(KP .)

Status

(F1)
Gold

(F2)

H Left Key

H right Key

Figure 5.2: Layout of the Table Editor Right Keypad

1–November–1992

5–8 CHAPTER 5. TABLE FILE SYSTEM

5.5 Operations on Tables

In this section we describe several of the mathematical operations that can be performed
on table data. More specialised topics are described in Chapter 8, ”Fitting of Data”, and
in Chapter 11 Vol B, ”Multivariate Analysis Methods”.

Arithmetic operations between columns in a table are done with the command
COMPUTE/TABLE. The selection flag is reset by this command. Special functions, named
according to the FORTRAN mathematical library, are also available.

Simple statistical descriptors are displayed with the command STATISTICS/ TABLE.
These descriptors are stored in output keywords for further usage in a procedure.

A set of histogram-related commands, with qualifier HISTOGRAM, allow the graphic
display of the histogram of a column (PLOT and OVERPLOT commands), the printout of
histogram values (READ and PRINT commands), or the generation of a 1D image with the
histogram of a column (command COMPUTE/HISTOGRAM).

Linear or polynomial fits in one or two dimensions can be performed on table columns
with the command REGRESSION, qualifiers LINEAR and POLY respectively. The coefficients
and error estimations are kept in output keywords that can be stored as table descriptors
with the command SAVE/REGRESSION. Fitted values are calculated with COMPUTE/REGRESSION.

A topic of special interest is the generation of table data from an image and vice versa.
A transformation was already described in section 5.4.3, and consists in copying the data
from one format to the other, using the commands COPY/IT and COPY/TI. Tabular data
can be converted into 1D or 2D image data with the command CONVERT/TABLE. This
command works in several modes controlled by a parameter. In all cases the sampling
domain of the result is defined by a reference image. The modes currently available are :
POLY (polynomial fit to table data), SPLINE (spline approximation), PLOT (scattergram
of the data in the table) and FREQ (2D histogram of the data in the table).

For more specific resampling and interpolating algorithms, the commands REBIN and
INTERPOLATE will provide full conversion between image and table formats (qualifiers TT,
TI, IT and II).

5.6 Command Overview

In this section we include a short description of the table commands in alphabetical order,
(see Appendix A for a more detailed explanation).

Reference to tables is done by the filename. The extension .tbl must be appended to the
filename in commands which can work both on images and tables (e.g.: READ/DESCRIPTOR
table.tbl).

Reference to columns can be done either by “name” or by “number”. Columns are re-
ferred to by name as :label, where label is a character string (Note the starting colon
‘:’ in front of ‘label’.) The string (max. 16 characters, case insensitive) should start
with a letter and may contain alpha-numeric characters and the underscore symbol.

1–November–1992

5.7. TABLE FORMAT FILES 5–9

Command Description

COMPUTE/TABLE Compute numeric expression of columns.
COMPUTE/HISTOGRAM Compute column histogram, result in table or image format.
REBIN Resampling data in table/image formats.
INTERPOLATE Spline interpolation of data.
REGRESSION/LINEAR Compute linear regression.
REGRESSION/POLY Compute polynomial fit.
SAVE/REGRESSION Store regression coefficients as table descriptors.
COMPUTE/REGRESSION Compute fitted values using the regression coefficients.
STATISTICS/TABLE Simple statistics on a table column.

Table 5.8: Operations on Table Data

Columns are referred by number as #n, where n is the integer defining the column
position.

Access to rows can be done in two modes, “sequential” or “direct”.

• Sequential access is defined by the row number as @n, where n is an integer
constant.

• Direct access is done through the values in the reference column.

5.6.1 List of Commands

Table 5.9 contains a list of table commands.
Other table related commands are described in Chapter 8, “Fitting of Data”, and in

Chapter 11, Vol B,“Multivariate Analysis Methods”.

5.7 Table Format Files

The conversion of ASCII data into table data can be done automatically (default option)
for tables with REAL*4 columns. In the case of more complex tables, a format file has to
be provided to control this conversion.

Format files are ASCII files with an extension .fmt, used optionally by the commands
CREATE/TABLE, READ/TABLE and PRINT/TABLE to control the input/output conversion.
They may contain first a FS statement, they must contain then one DEFINE/FIELD state-
ment for each column of the table and optional comment statements. DEFINE/FIELD
statements follow the syntax:

DEFINE/FIELD pos1 pos2 type [format] label [unit]

where:

1–November–1992

5–10 CHAPTER 5. TABLE FILE SYSTEM

COMPUTE/TABLE table column = expression

COMPUTE/REGRESSION table column = name[(ind-vars)]

COMPUTE/HISTOGRAM image = table column

COMPUTE/HISTOGRAM table/TABLE = table column

CONVERT/TABLE image = table indv[,indv] depv refima method [par]

COPY/KT keyword table column row

COPY/TK table column row keyword

COPY/TI in-table out-image

COPY/IT in-image out-table

COPY/TT in-table column [out-table] column

COPY/TABLE in-table out-table

CREATE/COLUMN table column [unit] [format] [type]

CREATE/TABLE table ncol nrow filename [formatfile]

DELETE/COLUMN table column [...]

EDIT/TABLE table [ncol nrow]

IDENTIFY/CURSOR table identifier x [y] [tolerance]

IDENTIFY/GCURSOR table identifier x [y] [tolerance]

INTERPOLATE/IT out-table i,d in+image 5 [degree]

INTERPOLATE/TI out-image in-table i,d refima 5 [degree]

INTERPOLATE/TT out-table i,d in-table i,d s [degree]

JOIN/TABLE tab1 col1,col2 tab2 col1,col2 outtab tol1,tol2

LOAD/TABLE table1 column1 column2 [column3] [p1 [p1] [p3]]]

MERGE/TABLE table1 [table2 . . .] out-table

NAME/COLUMN table column [column] [unit] [format]

OVERPLOT/HISTOGRAM table column [bin [min [max [LOG10]]]]

OVERPLOT/TABLE table column1 column2 [s-type]

PLOT/HISTOGRAM table column [sc-x,sc-y] [bin [min [max]]] [LOG10]

PLOT/TABLE table column1 column2 [sc-x,sc-y]

PRINT/HISTOGRAM table column [bin [min [max]]]

PRINT/TABLE table [column1 . . .] [row1 [row2]] [file [format]]

PROJECT/TABLE in-table out-table column [column ...]

READ/HISTOGRAM table column [bin [min [max]]]

READ/TABLE table [column1 . . .] [row1 [row2]] [format]

REBIN/IT out-table i,d[,b] in-image func parm intop

REBIN/TI out-image in-table i,d[,b] refima func parm intop

REBIN/TT out-tb i,d[,b] in-table i,d[,b] func parm intop

REGRES/LINEAR table dep-var ind-var1,ind-var2, . . .

REGRES/POLYN table dep-var ind-var1[,ind-var2] degree1[,degree2]

RETRO/TAB table

SAVE/REGRESSION table name

SELECT/TABLE table logical-expression

SET/REFCOLUMN table column

SHOW/TABLE table

SORT/TABLE table column

STATISTICS/TABLE table column

WRITE/TABLE table column row value

Table 5.9: Table Commands

1–November–1992

5.7. TABLE FORMAT FILES 5–11

pos1 — INTEGER, is the optional starting position of the field.

pos2 — INTEGER, is the optional last position of the field.

type — defines the type of information as:

R — REAL number, single precision,

D — real number, DOUBLE PRECISION,

I — INTEGER number,

C — CHARACTER string.

format — defines the format associated with that field and used for listing out its values.
Supported format are FORTRAN 77 standard format or special formats to accommo-
date sexagesimal values (Sww.dd) and time values (Tww.dd). These formats may be
defaulted, the defaults being defined as:

Aw — for CHARACTER string, where w = pos2-pos1+1

I11 — for INTEGER

E12.6 — for REAL in single precision

D24.17 — for REAL in double precision

label — defines the associated label, according to the rules in section 5.6.

unit — defines, optionally, the associated units.

The statement FS defines the list of field separators used in the ASCII data file. It is
only used when pos1 and pos2 are not specified in the DEFINE/FIELD statement. This
statement should be written as follows: FS = ”f1f2f3”. The number of field separators
is not limited. If the blank is used as field separator and if the ascii data file contains
character strings, the strings have to be enclosed by double quotes. Per default,
FS = ”\t”, i.e TABS and blanks are used as field separators.

The following format file

!+
! Example format file test1.fmt
!+
DEFINE/FIELD 1 9 C :NAME "NGC"
DEFINE/FIELD 10 14 R F5.2 :RA "HOUR"
DEFINE/FIELD 16 20 R F5.2 :DEC "DEGREE"
DEFINE/FIELD 22 22 C :TYPE " "
DEFINE/FIELD 24 26 I :RV "KM.SEC-1"
END

corresponds to an ASCII file, test1.dat say, with the following record structure:

1–November–1992

5–12 CHAPTER 5. TABLE FILE SYSTEM

.........1.........2.........3
123456789012345678901234567890

NGC 3379 10.75 12.85 E 893

(The ruler, of course, is not part of the data file.)
The following format file, using FS statement,

!+
! Example format file test2.fmt
!+
FS = "Ä" DEFINE/FIELD C :NAME "NGC"
DEFINE/FIELD R F5.2 :RA "HOUR"
DEFINE/FIELD R F5.2 :DEC "DEGREE"
DEFINE/FIELD C :TYPE " "
DEFINE/FIELD I :RV "KM.SEC-1"
END

can be used to create a table from the ASCII file test2.dat

NGC 3379<TAB>10.75<TAB>12.85<TAB>E<TAB>893

5.8 Example

As an example of use of the table file system, we here describe the tutorial procedure
executed via the TUTORIAL/TABLE command. This procedure uses a subset of the Uppsala
General Catalogue. The format of the catalogue is defined in the file ugc.fmt as follows:

DEFINE/FIELD 9 20 R G11.6 :RA "HOUR"
DEFINE/FIELD 21 32 R G11.6 :DEC "DEGREE"
DEFINE/FIELD 33 44 R G11.6 :DB "ARC.MIN."
DEFINE/FIELD 45 56 R G11.6 :DR "ARC.MIN."
DEFINE/FIELD 57 68 R G11.6 :BT "MAGNITUDE"
DEFINE/FIELD 69 80 R G11.6 :RV "KM.SEC-1"
END

This file and the actual ASCII data in ugc.dat will be copied into your workspace.
The first four lines of the data file have the following layout:
12345678901234567890123456789012345678901234567890123456789012345678901234567890

0.0117 15.87 6.500 6.300 12.00 1047.
0.0233 20.47 4.000 3.800 12.70 *
0.2933 59.03 8.000 10.00 * *
0.3583 16.20 5.800 5.100 14.60 *

(The ruler, of course, is not part of the data file.)
This tutorial shows the usage of some of the basic table file commands to analyse and

display the data set.

1–November–1992

5.8. EXAMPLE 5–13

CREATE/TABLE ugc 10 700 ugc ! create the table file (UGC.tbl)
NAME/COL ugc :RA F11.3 ! change format
NAME/COL ugc :DEC G12.6 ! change format
SHOW/TABLE ugc ! display structure
READ/TABLE ugc @1 @30 ! display a few entries
!
PLOT/TABLE ugc :DR :DB ! plot diameters in red and blue bands
!
REGR/LINEAR ugc :DB :DR ! linear regression on these variables
READ/KEY OUTPUTD ! and display stored coefficients
!
READ/HIST ugc :BT ! display results on terminal
PLOT/HIST ugc :BT ! and plot device
!
SELECT/TAB ugc :BT.LT.13.5 ! select brightest objects
!
STAT/TAB ugc :DR ! do statistics on the subset,
READ/HIST ugc :DR ! display the result
!
PLOT/TAB ugc :BT :RV ! and plot the selected set
!
SELECT/TAB ugc :RV.GT.4000.0 ! select new subset with largest rad.vel.
!
PRINT/TAB ugc ! print them
!
COMPUTE/TAB ugc :MBT = :BT-25.-5.*LOG10(:RV/50) ! compute abs.magnitude
NAME/COL ugc :MBT "ABS.B.MAG." ! include units
!
COMPUTE/TAB ugc :SIZE = :RV*SIN(0.000291*:DB)*20 ! diameter
NAME/COL ugc :SIZE "KPC" ! include units
!
PLOT/TAB ugc :MBT :SIZE ! display result

1–November–1992

5–14 CHAPTER 5. TABLE FILE SYSTEM

1–November–1992

Chapter 6

Graphic and Image Display

6.1 Graphic Facilities

This section describes the facilities of the graphics package in MIDAS. The package makes
use of the Astronet Graphic Library (AGL), which has been accepted as the standard
for maintenance and development of the MIDAS graphics software. An overview of the
graphic commands currently available in MIDAS is presented.

6.1.1 Introduction

In order to provide a device-independent graphics package, the Italian Astronet Graphic
Library has been adopted as the standard library for the plot package in MIDAS. One
of the main reasons for using the AGL package rather than one of the more evolved
and sophisticated packages (e.g. GKS) was the fact that the AGL package is simple;
meanwhile AGL is still capable of doing the things one needs for reasonably advanced
graphics, in particular with respect to interactive facilities. The AGL graphics library is
fully integrated within the MIDAS directory structure and is generated like every other
MIDAS subroutine library during installation. For an extensive description of the package
we refer to the AGL User’s and Installation Guides for Version 3.

The graphic facilities available in MIDAS can be divided into three main categories of
commands, based on their functionality:

• general commands that deal with the setup of graphic packages: the assignment of
the graphics device, routing a plot file to a graphic device, and general (over)plot
commands for text, line, symbols, etc.;

• plot commands which do the actual plotting and overplotting of data (i.e. images,
tables, descriptors or keywords);

• cursor commands which use the graphics cursor.

Below, subsection 6.1.2 first describes how graphic display units (e.g. terminals, work-
stations) can be activated inside the MIDAS environment. Thereafter, in subsection 6.1.3

6–1

6–2 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

to 6.1.5 the plot commands available in MIDAS will be discussed. In subsection 6.1.6
information can be found about how plot files can be manipulated. In section 6.1.8 a
number of examples are presented to illustrate the available commands and their syntax.
Finally, in subsection 6.1.9 an overview is given of all the available graphic commands in
MIDAS.

6.1.2 Graphic devices

The characteristics of graphic devices differ from device to device. Therefore, in order to
obtain a useful plot, the characteristics of the graphics device in use have to be known in
advance. MIDAS can run on various combinations of alpha–numerical terminals, image
display systems and graphic devices. How to specify the graphic output device for these
possibilities is described below.

If you are using the standard MIDAS configuration (alpha–numerical and graphic
terminal together with an image display), the MIDAS start–up procedure MIDAS takes
care of the proper assignment. If you want to obtain plot output on a workstation running
under X-window you have to issue the command CREATE/GRAPHIC. This command creates
a window on the workstation where subsequent plot and overplot commands will write.
Up to 4 graphic windows can be created this way. Removal of a window can be done with
DELETE/GRAPHIC.

To get plot output on a graphics device (the graphic terminal included), a proper
assignment for that device has to be done in advance. Obviously, the assignment depends
on the type of device in use and hence may differ from system to system. If your institute
mainly uses graphic terminals of brand “abc”, life would be much simpler if this device
were the default one and therefore the assignment to be included in the MIDAS startup
procedure. You can ask your local MIDAS support to do so. The assignment to be made
is:

• for VAX/VMS systems: ASSIGN AGL type AGL3DEV;

• for UNIX systems (C-Shell): setenv AGL3DEV AGL type;

• for UNIX systems (Bourne-Shell): AGL3DEV=AGL type.

Assignment and assignment change of the default device can always been done in the
login.prg file (see Chapter 3). This of course would be useful if a particular device is
not assigned by the MIDAS startup procedure but is used regurlarly. Finally, if you run
MIDAS from a standalone (non-graphic) terminal, an assignment to the NULL device
has to be made. In case of problems consult your local MIDAS support or your system
manager.

Table 6.1 contains the most commonly used graphics devices (the AGL type’s) currently
supported by MIDAS.

6.1.3 General Commands

The general plot commands in MIDAS mostly concern setting the plot characteristic, dis-
playing the setup, assigning the graphic output device, sending an existing plot to a device,

1–November–1992

6.1. GRAPHIC FACILITIES 6–3

Device Identification AGL type
AGFA postscript laser printers pscript
Apple Laser Writer pscript
DEC VT125 terminal vt125
DEC VT240 terminal vt125
DEC VT125 terminal with Retrogr. tkg.vt640
DEC VT100 terminal with Retrogr. tkg.vt640
CIT101 with CIG 201 card tkg.cit101
GraphOn GO–250 tkg.vt640
HDS 2200 tkg.hds22
HPGL plotters hpgl
LN03 plus laser printer tkg.ln03
Null device null
Raster devices raster
Tektronix 4010 tkg.t4010
Tektronix 4014 tkg.t4014
Tektronix 4100 series tkg.t4100
QMS laser printer tkg.qms
Versatec V-80 raster
X-Window idi

Table 6.1: Supported Devices

and some general plot functions. These commands are:

CREATE/GRAPHIC – create a graphic window on the workstation
DELETE/GRAPHIC – delete a graphic window from the workstation
CLEAR/GRAPHIC – clear the graphic screen or window

SET/GRAPHIC – set the graphic characteristics
SHOW/GRAPHIC – show the graphic characteristics

ASSIGN/GRAPHIC – assign the graphic device
COPY/GRAPHIC – route the plot file to a graphic device

PLOT/AXES – plot a box with tickmarks, ticklabels and axes labels
OVERPLOT/AXES – overplot a box with tickmarks, ticklabels and axes labels

LABEL/GRAPHIC – plot text in an existing plot
OVERPLOT/LINE – overplot a line in an existing plot
OVERPLOT/SYMBOL – overplot a symbol in an existing plot
OVERPLOT/GRID – overplot a grid, by connecting tickmarks

1–November–1992

6–4 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

The first two commands in this table are meant for users with workstations running
the X-Window display software. With these commands one can create and delete graphics
window(s). The create command allows control over the size of the graphics window as
well as the position where it is to be put. CLEAR/GRAPHIC erases the graphics window or
graphics terminal screen.

SET/GRAPHIC and SHOW/GRAPHIC

SET/GRAPHIC plays an important role in the plot package. This command gives the user
control over the plot size, line types, line thickness, symbol type and size, etc. In Table 6.2
the various options that can be set with the SET/GRAPH command are listed, together
with the default settings. Below we briefly discuss some of the options. More extended
documentation can be found in the help file of the SET/GRAPHIC command.

By default, all data points in frames, keywords and descriptors are connected with a
line; data points in tables are plotted individually. This setting can be changed with the
LTYPE and STYPE options in SET/GRAPH. Normally, when plotting data points in a frame,
descriptor, or keyword, the plot package first looks for the line type. If the line type is set
to 0 (LTYPE=0) it looks for the symbol (STYPE). If both LTYPE and STYPE are found to be
0 a fatal error occurs.

In case of table plotting the package first looks for the symbol type. When STYPE=0
a line will be drawn corresponding to LTYPE. An error occurs if both LTYPE and STYPE
are 0. For histogram plotting or when the bin mode is on (BIN=ON), the package needs a
line type greater than zero; an error occurs when LTYPE=0. Table data can not be plotted
with BIN=ON.

By default, before a PLOT command is executed the graphics window is erased. To
switch off the erase, you can use the option CLEARGRA=OFF. By doing so, subsequently
issued plot commands will run in overplot mode: the screen content is kept. Hence, by
issuing a number of PLOT commands you can easily produce several plots on one screen
(page). To help you more in designing the layout of your plot scales (and lenghts) as
well as the position on the screen (paper) can be pre-defined by XSCALE and YSCALE, and
XOFFSET and YOFFSET.

The default font used by MIDAS is a simple one but is plotted fast. More fonts are
available to enable you to obtain publication quality graphics output. With the command
SET/GRAPHIC FONT=n, where n is larger than 0, you can use a different (nicer) font than
the default one. Currently, the following font sets are available:
0 Default built-in font;
1 High quality roman font;
2 Greek font;
3 Script font;
4 Old English font with astronomical symbols;
5 Tiny roman font; simpler than 1.

To display these fonts and the associ-

ated character and symbol sets you can run the tutorial tutorial/graph fonts.

1–November–1992

6.1. GRAPHIC FACILITIES 6–5

Option Value and meaning and defaults
DEFAULT no value; sets plot package in default mode
XAXIS= AUTO or xstart,xend,xbig tick,xsmall tick in world coordinates;

when xsmall tick < 0 a logarithmic axis is plotted; the default is AUTO
YAXIS= AUTO or ystart,yend,ybig tick,ysmall tick in world coordinates;

when ysmall tick < 0 a logarithmic axis is plotted; default is AUTO
FRAME= RECT or SQUA; default is RECT
XSCALE= AUTO, scale in world units/per mm or size of plot
YSCALE= AUTO, scale in world units/per mm or size of plot
XOFFSET= NONE or the offset of the left y axis to left device boundary
YOFFSET= NONE or the offset of the lower x axis to lower device boundary
XFORMAT= NONE, AUTO or format description (see below)
YFORMAT= NONE, AUTO or format description (see below)
PMODE= 0 (plot without frame and legend), or

1 (plot with frame and some information), or
2 (plot with frame and full legenda) which is default

FONT= font to be used to write text; default is 1; (see below)
LTYPE= 1 (solid line) to 6 (long dash - short dash); (see below)

default is 1; 0 corresponds with no line at all
LWIDTH= set line width; 0 or 1 for single width; 2, 3 and 4 for increasing thickness
STYPE= 1 (dot) to 21 (left arrow); default 4 (cross); 0 corresponds with no symbol at all
SSIZE= value; set the scaling factor of symbols; default is 1
TSIZE= value; set the scaling factor for text strings; default is 1
TWIDTH= value; set the line width for text strings; default is 1
BINMODE= OFF or ON; default is OFF
COLOUR= number ranging from 0 to 7; the default is black (1)

The setting has only effect on graphic display devices supporting colour
BCOLOUR= number ranging from 0 to 7; set the background colour; the default is black (1)

The setting has only effect on graphic display devices upporting colour
CLEARGRA= ON or OFF. OFF will not clear graphic screen for a PLOT command;

default ON

Table 6.2: SET/GRAPHIC Options

1–November–1992

6–6 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

If a colour postscript printer is at your disposal you may use the colour setting options
COLOUR=n and BCOLOUR=n.

In the SET/GRAPH command defaults for single parameters can be (re)set by: SET/GRAPH
par name=value. The reinitialisation of all plot parameters can be done by: SET/GRAPHIC
or SET/GRAPHIC DEF.

ASSIGN/GRAPHIC and COPY/GRAPHIC

Table 6.1 contains the graphic output devices on which MIDAS plots can be produced. The
user can specify one of these output devices in advance by the ASSIGN/GRAPHIC command.
In addition to the hardcopy devices available, the command can also be used to reassign
the graphics window. For example, the user can indicate that the plot has to be produced
on a second graphics window, or on a display window of his/her workstation. After the
plot command has finished and a plot file is produced, this plot file can be sent to a device
by the COPY/GRAP command. This command accepts the same graphics devices as the
ASSIGN/GRAPH command. For workstations this offers the possibility to copy a graph from
one window to another. In section 6.1.6 more information can be found about how MIDAS
takes care of your plot files.
Example:

assign/gra laser nospool
plot/tab example ? #1 -50,-70,10,90
overplot/tab example ? #2 -50,-70,70,90
copy/graphic laser
copy/graphic g,0
assign/gra g,0

In this example we first assign the graphics output to become the output device. However,
the plot file is kept on disk and not spooled to the printer. After the plot is finished, it is
sent to the printer. Hereafter, we also send a copy to the graphics window (provided one
exists). Finally, we assign the graphics window as the output device.

PLOT/AXES and OVERPLOT/AXES

The command PLOT/AXES offers the users the possibility to draw a frame with certain
ranges in x and y. The command is very flexible, since it accepts both the ranges in x
and y and the scaling factors as input parameters. Also, the user has the freedom to
select the location where the frame is to be drawn. The actual data points can be plotted
with subsequent overplot commands (see example below). More coordinate boxes can
be plotted using the command OVERPLOT/AXES with the same parameter list as in the
PLOT/AXES command. In the example below a series of plots is produced with plot and
overplot commands. First, we start with a PLOT/AXES and an OVERPLOT/TABLE command,
and then continue with three OVERPLOT/AXES and OVERPLOT/TABLE commands. The result
is four graphs in the graphics window. Example:

1–November–1992

6.1. GRAPHIC FACILITIES 6–7

assign/graph g,0 ! assign graphic window 0
plot/axes 0,10 -1,1 -50,-70,10,80 ! plot the first axes
overplot/tab example ? #1 ! plot first coord. box
! overplot/axes 0,10 -1,1 -50,-70,70,90 ! overplot second box
overplot/tab example ? #2
! overplot/axes 0,10 -1,1 -50,-70,130,90 ! overplot third box
overplot/tab example ? #3
! overplot/axes 0,10 -1,1 -50,-70,190,90 ! overplot fourth box
overplot/tab example ? #4

Alternatively, the system also offers a more simplier way of doing the same thing:
instead of the PLOT/AXES and OVERPLOT/AXES commands we switch off the clearing of the
graphics window first and continue with simple PLOT/TABLE commands.
Example:

clear/graph set/graph clear=off ! erase switched off
plot/tab example ? #1 -50,-70,10,10 ! plot the fifth box
plot/tab example ? #2 -50,-70,70,10
plot/tab example ? #3 -50,-70,130,10
plot/tab example ? #4 -50,-70,190,10 ! plot the last box

For both the plot and overplot commands one can use the command SET/GRAPH
XFORMAT=none YFORMAT=none to switch off the tickmark labels along the axes. Of in-
terest, especially for overlays, is another syntax of the PLOT/AXES and OVERPLOT/AXES
command: it offers the possibility of drawing axes around (part of) an image displayed in
the display window.

LABEL/GRAPHIC, OVERPLOT/LINE and OVERPLOT/SYMBOL

For overplotting of text one can use the command LABEL/GRAPHIC. The text will be plotted
in the font style set with the FONT keyword in the SET/GRAPHIC command. E.g. with
LABEL/GRAPHIC and running in FONT=1 text will be generated in the roman font type.
LABEL/GRAPHIC make use of the built-in features of AGL. These features allow to change
font, draw subscripts and superscripts, scale the text size, or draw various symbols, all
within the text string. All these possibility become available by including metacharacters
in the text string. Currently, AGL knows the metacharacter set listed in Table 6.3.

The character ‘~’ can also be used instead of ‘\’ as metacharacter flag. The ‘~’ is
more suited to C programs where ’\’ has a special meaning. All selections made by
metacharacters are valid from the point in the string where they are defined up either
to the end of current group (the part of the string enclosed in \{...\}) or to the end of
the string. If the metacharacter sequence is more than one character long (escape not
included, of course), it must be followed by a blank space.
Example:

1–November–1992

6–8 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

Metacharacter Meaning
\{ begin grouping
\} end grouping
\^ move the following part of the string up by half a character
\!u move the following part of the string up by half a character
_ move the following part of the string down by half a character
\!d move the following part of the string down by half a character
\< backspace by a single character
\+ increase character size by 20%
\- decrease character size by 20%
\! force interpretation of the following part as a metasequence

(this is needed to allow metasequences starting with ’n’
not to be interpreted as newlines)

\0 select font 0 (Default font)
\1 select font 1 (Quality roman font)
\2 select font 2 (Greek font)
\3 select font 3 (Script font)
\4 select font 4 (Old English)
\5 select font 5 (Tiny roman font)
\[increase line width (bolding; optional)
\] decrease line width (bolding; optional)
\#<n> draw marker number < n > into the line
\n perform a ‘newline’
~~ draw a single ’~’ character (must be following by a blank)
\~ draw a single ’\~’ character (must be following by a blank)
~\ draw a single ’\’ character (must be following by a blank)
\\ draw a single ’\’ character (must be following by a blank)

Table 6.3: Meta Character in AGL and MIDAS

1–November–1992

6.1. GRAPHIC FACILITIES 6–9

LABEL/GRAP "e\{\!u(x\{\!u2\}+y\{\!u2\})\}= -
(\alpha +\beta) sin\{\!u2\}\theta "

This command will produce the label e(x2+y2) = (α+β) sin2 θ at a position which the user
should give via cursor input.

MIDAS/AGL also interprets a set of ‘TEX-like’ keywords as listed in table 6.4. Due to
the fact that most of them represent special characters and symbols to be printed, only
the names are listed; the symbols can only be seen by LABEL/GRAPHIC or the command
TUTORIAL/GRAPH.

Besides overplotting of text strings, the user can also overplot lines (up to six different
line types, depending on the device), and symbols (more than twenty). Depending on the
device, up to four different line widths can be used. The selection of line properties and
of symbol type can be done with SET/GRAPH, or, at least for line and symbol type, on the
command line.

6.1.4 Main Plot Commands

As described in Chapter 3, the MIDAS data structures include frames, masks, tables,
catalogues, descriptors, and keywords. With the exception of the masks and catalogues,
the plot package is able to plot the data stored in these structures. Data can be plotted
with PLOT/ as well as with OVERPLOT/ commands. In the first case, MIDAS will start a
complete new plot (e.g. a graphic terminal screen will be erased and old plotfiles will be
deleted); in the latter MIDAS will extend the existing plot information without erasing
the results of previous plot commands.

In general all plot commands in this section have a well defined syntax:

PLOT/QUALIFIER P1 P2 P3 P4 P5 P6 P7 P8,

where:
P1 = table, image, descriptor or keyword name
P2 = columns, area, or indices of P1
P3 = scales in world coordinates/mm or size of the plot; only for PLOT commands
The meanings of the remaining parameters on the command lines vary from command to
command; in most cases they are used for options. Obviously, in case of overplotting, the
parameter for the scales is absent. The main commands for plotting data structures are:

PLOT/CONTOUR – plot contours of a two-dimensional image
OVERPLOT/CONTOUR – overplot contours of a two-dimensional image
PLOT/COLUMN – plot a column of an image
OVERPLOT/COLUMN – overplot a column of an image
PLOT/DESCRIPTOR – plot an entry in a descriptor
OVERPLOT/DESCRIPTOR – overplot an entry in a descriptor
PLOT/GRAY – plot gray scale map of a two-dimensional image
OVERPLOT/GRAY – overplot gray scale map of a two-dimensional image

1–November–1992

6–10 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

\AA \Alpha \Aquarius \Aries

\Beta \Cancer \Capricorn \Chi

\Delta \Earth \Epsilon \Eta

\Gamma \Gemini \Iota \Jupiter

\Kappa \Lambda \Leo \Libra

\Mars \Mercury \Moon \Mu

\Neptune \Nu \Omega \Omicron

\PI \Phi \Pisces \Pluto

\Psi \Rho \Sagittarius \Saturn

\Scorpio \Sigma \Sqrt \Tau

\Taurus \Theta \Upsilon \Uranus

\Venus \Virgo \Xi \Zeta

\aleph \alpha \asteroid \beta

\bigcirc \black \blue \cent

\chi \circ \cyan \clover

\clubsuit \comet \dag \ddag

\default \delta \diamond \div

\downarro \epsilon \equinox \equiv

\eta \firtree \gamma \ge

\greek \green \hbar \heart

\infty \int \iota \italic

\kappa \lambda \larrow \le

\magenta \mp \mu \!nabla

\!ne \!nu \odot \oint

\old \omega \omicron \oplus

\otimes \palmtree \paragraph \parallel

\partial \perp \phi \pi

\pm \propto \psi \red

\rho \rightarrow \roman \script

\shield \sigma \snow \spade

\sqrt \sum \tau \theta

\times \tiny \uparrow \upsilon

\varepsilon \varphi \vartheta \white

\xi \yellow \zeta

Table 6.4: TEX-like Characters for text strings in MIDAS Graphics

1–November–1992

6.1. GRAPHIC FACILITIES 6–11

PLOT/HISTOGRAM – plot a histogram of a table column or image
OVERPLOT/HISTOGRAM – overplot a histogram of a table column or image
PLOT/KEYWORD – plot the contents of a keyword
OVERPLOT/KEYWORD – overplot the contents of a keyword
PLOT/PERSPECTIVE – perspective plotting (3-dim.) of an image
PLOT/ROW – plot a row (line) of an image
OVERPLOT/ROW – overplot a row (line) of an image
PLOT/TABLE – plot table data
OVERPLOT/TABLE – overplot table data
OVERPLOT/ERROR – overplot table column containing errors
PLOT/VECTOR – plot vector map from two 2-dim. images with smoothing option
OVERPLOT/VECTOR – overplot vector map from two 2-dim. images with smoothing option

6.1.5 Graphic Cursor Commands

In some of the analysis programs in MIDAS the graphic cursor is a powerful tool. For
example, using the cursor one can retrieve wavelengths and line intensities in a plotted
spectrum, integration of emission or absorption lines over a wavelength range selected by
the cursor, compute the line width and center, etc. With the general GET/GCURSOR com-
mand the user can retrieve information from plotted data and store this in a table. Listed
below are some of the core and application commands which use cursor interaction. Many
additional graphics commands, including those that use cursor interaction, are available
in the various contexts, e.g. SPEC and ECHELLE.

GET/GCURSOR – read coordinates from graphics screen
CENTER/GAUSS – computes center of a 1-dim. or 2-dim. feature
MODIFY/GCURSOR – change data line of an image interactively
INTEGRATE/APERTURE – compute flux inside an aperture
INTEGRATE/LINE – integrate row of a frame using the cursor
INTEGRATE/STAR – compute flux, radius and background of stars

6.1.6 Handling of Plotfiles

Plotting in MIDAS will create a MIDAS plotfile which contains all essential plot informa-
tion. By default this plotfile (metafile) is always created by the execution of the main plot
commands. The plotfile will carry the name of the data structure that has been plotted:
the name of a frame, table, descriptor or keyword. The plotfile has the extension “.plt”.
MIDAS keeps track of what the user has plotted. The SHOW/GRAPH command shows the
user which is the last created plotfile. Subsequent overplot commands will append to this
plotfile. At this stage, names of plotfiles are unique, and do not have version numbers.
Hence, MIDAS will delete an old plotfile if a new one with the same name is created.

There are several ways to obtain a hardcopy of a plot. Below you will find a few

1–November–1992

6–12 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

examples.

1. The user works with a graphic terminal or a workstation and has made this plot on
the graphic terminal first. He/she can now send the plot to a hardcopy device using
the COPY/GRA command.
Example:

MIDAS 001> PLOT/TABLE mytable :velocity :distance
MIDAS 002> COPY/GRAPH LASER

2. The user does not have a graphics terminal (or does not want to use it), and wants to
dump his plot directly onto a hardcopy device. In this case, the hardcopy device has
to be assigned first as the output device by the ASSIGN/GRAPH command. Now all
the plot(s) (including the overplot !!!) will be sent directly to the hardcopy device.
Example:

MIDAS 003> ASSIGN/GRAPH LASER ! assign LASER as output device
MIDAS 004> PLOT/TABLE mytable :velocity :distance ! make plot

3. In a MIDAS plot command sequence (with many e.g. OVERPLOT and LABEL com-
mands) intermediate output is not always wanted, in some cases even undesirable. In
order to switch off the direct routing of plots to a device users can specify the extra
switch NOSPOOL in the ASSIGN/GRAPH command. Using this switch the plotfile(s) will
be stored on disk first. Once the user has finished his sequence of plot commands,
he/she can create the complete plot on the hardcopy device using the command
COPY/GRAPH. Intermediate results can be obtained using the same command.
Example:

MIDAS 005> ASSIGN/GRAP LASER NOSPOOL ! plot file, don’t send
MIDAS 006> PLOT/ROW frame [@100,@150:@150,@250] 20.0,20.0
MIDAS 007> OVERPLOT/TABLE table #1 ! overplot
MIDAS 008> LABEL/GRAPHIC "THIS IS AN EXAMPLE" 90 4 400,300
MIDAS 009> COPY/GRAPH LASER ! send the plot file

4. The user wants to send a previously created MIDAS plotfile (e.g. “midas.plt”, and
different from the last created plotfile) to a device.
Example:

MIDAS 010> COPY/GRAPH LASER frame.plt ! send plotfile to LASER

As can be seen in section 6.1.9, in most cases the user can produce a plot with certain
scales of the x– and y–axis. In the current version routing the plot file (with COPY/GRAPH)
to a device different from the one prespecified (with the ASSIGN/GRAP command) may lead
to incorrect scales. In case the prespecified device is the same as the device to which the
plot is sent the scales will be correct.
Example:

1–November–1992

6.1. GRAPHIC FACILITIES 6–13

MIDAS 005> ASSIGN/GRAPH VERSA NOSPOOL
MIDAS 006> PLOT/ROW image [@100,@150:@150,@250] 20.0,20.0
MIDAS 007> OVERPLOT/TABLE table #1
MIDAS 008> LABEL/GRAPHIC "THIS IS A EXAMPLE" 90 4 400,300
MIDAS 009> COPY/GRAPH LASER ! plot will have incorrect scales
MIDAS 010> COPY/GRAP VERSA ! with correct scales

6.1.7 Encapsulated PostScript Files

For any PostScript hardcopy printer that has been assigned by ASSIGN/GRAPH, MIDAS
produces a so-called encapsulated PostScript file. Using a public domain macro package
(e.g. Psfig/TEX) this PostScript plot file can, with a minimum of effort, be included in
TEX or LaTEX documents. To do so, in the TEX or LaTEX document one should refer to
the (possibly renamed) MIDAS PostScript file (normally pscrplot.0). Below, follows a
simple LaTEXexample that shows how it works.
Example:

MIDAS 005> ASSIGN/GRAPH laser NOSPOOL
MIDAS 006> PLOT/ROW image [@100,@150:@150,@250] 20.0,20.0
MIDAS 007> OVERPLOT/TABLE table #1
MIDAS 008> COPY/GRAPH laser
MIDAS 009> $copy pscrplot.0 latexplot.ps

In your directory we now have a PostScript file latexplot.0, containing the complete
plot information written by the commands 006 and 007. Now, can include this MIDAS
PostScript file in our LaTEX document, in this case using psfig, developed by Trevor Darrell
(trevor@media.mit.edu). Here is how the LaTEX text file with the included MIDAS plot
then looks like.
Example:

\documentstyle[11pt,psfig]{article}
\begin{document}
\section*{Abstract}
We show a simple example of how one can include a PostScript figure,
generated by MIDAS, into a existing \LaTeX document.
\nopagebreak

\begin{figure}[h]
\centering{
\hspace*{-1.cm}
\vbox{\psfig{figure=latexplot.ps,width=10cm,height=5cm}}\par

}
\end{figure}

\end{document}

1–November–1992

6–14 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

6.1.8 Examples

To show the usage and the possibilities of the plot package, a number of examples are built
are available below. These examples are available via the TUTORIAL/PLOT P1 command,
where P1 can be:

• GENERAL to show an example for the graphics utilities, like drawing lines, symbols,
text, changing fonts, etc ...

• AXES to show an example of plotting several axes in one graphics window and using
different axes;

• TABLE to show an example of table plotting using different symbols and axes;

• 1DIM to show an example of (spectral) line plotting;

• 2DIM to show two–dimensional gray scale and contour plotting.

6.1.9 Command Summary

Table 6.5 shows a summary of the graphic commands in MIDAS, listed in alphabetical
order.

1–November–1992

6.1. GRAPHIC FACILITIES 6–15

ASSIGN/GRAPH [device name] [spool option]

CENTER/GAUSS in specs out specs [out opt]

CLEAR/GRAPHIC

COPY/GRAPHIC [device name] [plot file]

CREATE/GRAPHIC [graph id] [graph spec]

DELETE/GRAPHIC [graph id]

GET/GCURSOR [out specs] [app flag] [max]

INTEGRATE/LINE frame [y coord] [x start,x end] [no curs,degree] [batch specs]

LABEL/GRAPHIC label [x pos,y pos[,mm]] [angle] [size] [centering]

MODIFY/GCURSOR frame [y coord] [x start,x end] [no curs,degree]

OVERPL/AXES [x axis spec] [y axis spec] [x scale,y scale] [x label] [y label] [x off,y off]

OVERPLOT/AXES [coord str]

OVERPLOT/COLUMN frame [x coord] [x sta,x end] [offset] [l type]

OVERPLOT/CONTOUR frame coord str [contours] [sm par]

OVERPLOT/DESCRIPTOR frame [descriptor] [start,end] [offset]

OVERPLOT/ERROR table column1 [column2] column err [orient]

OVERPLOT/GRAY frame [coord str] [gray lev] [sm par] [gray ness] [options]

OVERPLOT/HISTOGRAM table column [bin [min [max]]] [offset] [log flag]

OVERPLOT/HISTOGRAM frame [offset] [log flag]

OVERPLOT/KEY [key word] [start,end] [offset]

OVERPLOT/LINE [line type] [x sta,y sta [x end,y end]]

OVERPLOT/ROW frame [y coord] [x sta,x end] [offset] [l type]

OVERPLOT/SYMBOL [x coord,y coord] [s type] [s size]

OVERPLOT/TABLE table [column1] [column2] [s type]

OVERPLOT/VECTOR frame a frame b [coord str] [sc x,sc y] [scale r] [pos range] [sm par] [head]

PLOT/AXES [x axis spec] [y axis spec] [sc x,sc y] [x label] [y label] [x off,y off]

PLOT/AXES [coord str]

PLOT/COLUMN frame [x coord] [x sta,x end] [sc x,sc y]

PLOT/CONTOUR frame [coord str] [x scale,y scale] [contours] [sm par]

PLOT/DESCRIPTOR frame [descriptor] [start,end] [x scale,y scale]

1–November–1992

6–16 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

PLOT/GRAY frame [coord str] [x scle,y scale] [gray lev] [sm par] [gray ness] [options]

PLOT/HISTOGRAM frame [x scale,y scale] [log flag]

PLOT/HISTOGRAM table column [x scale,y scale] [bin [min [max]]] [log flag]

PLOT/VECTOR frame a frame b [coord str] [sc x,sc y] [scale r] [pos range] [sm par] [head]

PLOT/KEY [keyword] [start,end] [x scale,y scale]

PLOT/PERSPECTIVE frame [coord str] [azi angle,alt angle] [sm par] [xy flag]

PLOT/ROW frame [y coord] [x sta,x end] [sc x,sc y]

PLOT/TABLE table [column1] [column2] [x scale,y scale]

SET/GRAPHIC option1[=value1] [option2[=value2] . . .]

SHOW/GRAPHIC

Table 6.5: Graphic Commands

1–November–1992

6.2. IMAGE DISPLAYS 6–17

6.2 Image Displays

This section describes the setup of the image displays used by MIDAS and the functionality
provided by MIDAS to interact with these displays. For a description of the conceptual
model for an image display device see the definition document for the IDI–routines.
MIDAS supports peripheral displays like e.g. the Gould IP8000 (former DeAnza) series
and XWindow displays. We describe here the IP8500 display specifically and a generic
XWindow display.

6.2.1 IP8500 display

Each image memory or “channel” has independent scroll and zoom capabilities as well as
an intensity transformation table which can be used like a colour look–up table and can
also be used to change the output values that are fed to the look–up tables in the video
output controller. This allows fast displays of log or histogram equalized images without
having to reload the entire image.

One image channel is designated as the graphics (or overlay) channel. This also has
its own zoom and scroll capabilities. In addition, the colour of the overlay can be selected.
In MIDAS the last available channel is always used as the graphics channel. Also an
alphanumeric memory is associated with the image display station.

The video output controller (VOC) selects which image memory is to be displayed on
which colour channel as well as performing the task of overlaying the graphics plane. It
also takes care of integrating the cursor and alphanumeric data into the video output.
Finally, the VOC supports Split Screen mode where parts of 2 or 4 image channels are
displayed together on the screen.

Using Image Memories

Several image memories are associated with each image display station. Thus it is possible
to have several images loaded in the image display at the same time and to switch quickly
from one channel to the other. Images can be loaded into any of the image memories.
They are referenced by numbers 0, 1, 2, or 3. A typical command sequence would be:

LOAD/IMAGE galaxy 0 ! load an image in channel 0
DISPLAY/CHANNEL 0 ! display memory channel 0

1–November–1992

6–18 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

The most important commands associated with handling the image memories are:

LOAD/IMAGE - load an image into image memory
GET/IMAGE - read an image from the image memory
GET/CURSOR - read pixel values of displayed image
DISPLAY/CHANNEL - display the image in the selected channel
CLEAR/CHANNEL - erase contents of an image channel
SET/SPLIT - enable split screen
CLEAR/SPLIT - disable split screen
ZOOM/CHANNEL - zoom in integer steps 1 to 8
SCROLL/CHANNEL - scroll the image
BLINK - blink between two different image memories
SHOW/CHANNEL - show status of image channel

Look–Up Tables

Look–up tables or LUTs are the tables that map the data in the image memory into
colours on the display when the system is used in pseudo–colour mode. Commands exist
to load LUTs into the image display, to modify LUTs interactively and to read back LUTs
from the image display. Interactive modification is done via the joystick or trackball device.

Some of the existing LUTs are:

backgr
color
heat
light
pastel
pseudo1, pseudo2
rainbow, rainbow1 . . . rainbow4
random, random1 . . . random4
smooth
staircase
stairs8

Use the command TUTORIAL/LUT to see what some of the available LUTs actually look
like and how to modify the LUTs interactively.
The main commands available for handling LUTs are:

LOAD/LUT - load a look–up table
GET/LUT - read back a look–up table

1–November–1992

6.2. IMAGE DISPLAYS 6–19

MODIFY/LUT - interactively modify a look–up table
CLEAR/LUT - bypass the look–up table
SET/LUT - pass through a look–up table
DISPLAY/LUT - show the look–up table as a colour bar
CREATE/LUT - create a look–up table using the HSI colour model

Intensity Transformation Tables

The intensity transformation tables (ITTs) come between the image memories and the
look–up tables. Using ITTs in the display mode allows special modifications to be ap-
plied to the displayed data without modifying the look–up tables or the data in the image
memories. Interactive modification is done via the joystick or trackball device.
The main commands which control the ITT functions are:

LOAD/ITT - load an ITT
CLEAR/ITT - bypass the ITT
SET/ITT - pass through an ITT
GET/ITT - read back an ITT
MODIFY/ITT - modify the ITT interactively

To display the ITT, use DISPLAY/LUT which shows the combined effect of LUT and ITT.
Some of the currently available ITT tables are:

ramp
neg
expo
log
neglog
jigsaw
staircase

With the command TUTORIAL/ITT you can see the effect of ITTs and modify the ITTs
interactively.

Using the Cursors

Each image display has two independent cursors available. In addition each cursor shape
can be defined. The variety of possibilities available for various cursor forms and types
defies a simple explanation here that would make much sense. The interested user is
referred to the command TUTORIAL/CURSOR which gives a demonstration of the possible

1–November–1992

6–20 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

cursor shapes.
The cursor(s) are controlled interactively by a special device e.g. tracker ball, joystick or
mouse. Detailed information on how to operate the cursors can be found in Appendix C.
In general there is a switch for each cursor to define its status ON/OFF. When a cursor
is active (ON) its position can be read by pressing the Enter key. To exit an interactive
cursor command one normally has to switch the cursors off and press the Enter key.
The commands associated with cursor control operations are:

SET/CURSOR - enable selected cursor

LOAD/CURSOR - load a programmable cursor

GET/CURSOR - read cursor positions

CLEAR/CURSOR - disable cursors

Graphics

Each user has a graphics (or overlay) channel associated with the image display. The
currently available commands associated with the use of the overlay channel are listed
below:

SET/OVERLAY - enable the overlay of graphics on top of the image
CLEAR/OVERLAY - disable the overlay memory
LOAD/OVERLAY - load a LUT for the graphic channel (for experts only!!)
SCROLL/OVERLAY - scroll the graphics channel with the image channel
ZOOM/OVERLAY - zoom the overlay with the image channel
DRAW/. . . - draw a geometric shape like CIRCLE, RECTANGLE, etc. in the overlay plane
SET/CHANNEL - designate a channel as image or graphics

Turning off the overlay/graphics via CLEAR/OVERLAY only disables the overlaying of the
graphics. To really get rid of what is in the overlay channel you must use CLEAR/CHANNEL
OVERLAY.
Furthermore, due to the internal hardware of the IP8500, disabling the overlay will also
turn off the visibility of the cursors!

Alphanumerics

The alphanumerics memory is divided up into 22 lines of 80 characters. (see Appendix C).
The alphanumeric characters that are available are alphabetical upper case and numbers
plus several special characters. Options exist to choose the colour and priority of the
alphanumeric display.
Commands associated with alphanumeric display are:

LABEL/DISPLAY - load a string into the alphanumeric memory

1–November–1992

6.2. IMAGE DISPLAYS 6–21

CLEAR/ALPHA - clear the alphanumeric display

There is also an option in the LABEL/DISPLAY command to use the overlay channel for
text (with higher resolution) instead of the alphanumeric memory.

True Colour or RGB Operations

The IP8500 allows pictures to be displayed in true colour using three image memories
(channel 0, 1 and 2) simultaneously for the red, green and blue images needed to make up
a true colour image. Channel 0, 1 and 2 may also be referred to as Red, Green and Blue.
To start using the RGB mode of the display, execute the command:

SET/DISPLAY RGB

The CUTS used for mapping the image into the range of image memory need to be set
individually for each of the images to be used. Next, each channel must be loaded indi-
vidually with the appropriate image. This is done as follows:

LOAD/IMA rpict R ! load the red picture in channel 0
LOAD/IMA gpict G ! load the green picture in channel 1
LOAD/IMA bpict B ! load the blue picture in channel 2

It is now possible to use several of the other commands that control the image display, but
they may perform in slightly different ways than when the system is used for pseudo–colour
displays. The following comments are intended to give some guidelines.

ZOOM — This command will zoom all three channels together.

SCROLL — This scrolls only one channel at a time. The choice is governed by the input
parameter which can be R, G, or B.

SET/SPLIT — This will show the three channels in their native colours.

GET/CURSOR — Generally cursor operations will not perform the operation you expect
in RGB mode. Nevertheless, cursor values can be extracted. They will come from the
last accessed image channel.

LOAD/LUT — This command should be avoided since LUTs are handled in a very special
way in RGB mode.

To exit from the RGB mode, execute the command SET/DISPLAY PSEUDO.

1–November–1992

6–22 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

6.2.2 XWindow display

With the term XWindow display we refer to a bitmapped screen supporting the XWin-
dow environment. These displays have less functionality provided in hardware than the
“classical” peripheral image displays. On the other hand they offer much more flexibility
via software. For example, display screens of different sizes may be created and different
number of image channels may be connected to any one display.
Another important difference results from the way XWindows works: when an X ap-
plication program terminates, all the connected windows and data structures disappear.
Therefore, MIDAS starts up an independent server process, the IDIserver, which owns all
X11 related data structures. The MIDAS applications do not interact directly with the
windows but send messages to the server which then performs the actual task. Like this we
can keep the windows alive while the different applications are executed and terminated,
one by one.
Also keep in mind that all interaction with the display will only work while the input
focus is in the display window (either enforced by clicking the mouse in that window or
just moving the cursor into it).
Image displays are created on the screen via the CREATE/DISPLAY command. An “image
display” is then represented by a window on the bitmapped screen. It may have one or
several image channels associated with it. The image channels may have the same size as
the display window or could be larger. These channels are not realised in hardware (e.g.
video memory) like the peripheral image displays, but exist as data structures in main
memory. Also an overlay channel and an alphanumerics memory are emulated for each
image display. Initially each display is provided with a grayscale LUT.
You may create several image displays at the same time on your bitmapped screen even
though only one display can be the current active display at any time. With the command
ASSIGN/DISPLAY you switch from one display to the next.
Each image channel has independent scroll (also emulated in software) but no zoom ca-
pabilities. There are special commands like GET/CURSOR and VIEW/IMAGE which provide
zoom in a special zoom window. Also available is an intensity transformation table but
only one per image display and not one per image memory since the ITTs are emulated
by convolving the ITT values with the current LUT.

Using Image Memories

Several image memories may be associated with each image display. However, at the
moment the blinking between different image memories is so slow that is it not very useful
to create image displays with many image channels. Images can be loaded into any of the
image memories. They are referenced by numbers 0, 1, A typical command sequence
would be:

LOAD/IMAGE galaxy 0 ! load an image in channel 0
LOAD/LUT heat ! load a colour look–up table
DISPLAY/CHANNEL 0 ! display memory channel 0

1–November–1992

6.2. IMAGE DISPLAYS 6–23

The most important commands associated with handling the image memories are:

CREATE/DISPLAY - create an image display with image channels(s)
VIEW/IMAGE - explore an image ...
LOAD/IMAGE - load an image into image memory
GET/IMAGE - read an image from the image memory
GET/CURSOR P5=w - read pixel values of displayed image using a zoom window
DISPLAY/CHANNEL - display the image in the selected channel
CLEAR/CHANNEL - erase data in an image channel
SCROLL/CHANNEL - scroll the image
SHOW/CHANNEL - show status of image channel

Look–Up Tables

Look–up tables or LUTs are the tables that map the data in the image memory into
colours on the display when the system is used in pseudo–colour mode. In contrast to the
IP8500 display, the size of the LUT is not constant but depends upon how many colours
are already used by other X applications running already. Commands exist to load LUTs
into the image display, to modify the LUTs interactively and to read back LUTs from the
image display.
Interactive modification is done via the arrow keys on the keyboard.

Some of the existing LUTs are:

backgr
color
heat
light
pastel
pseudo1, pseudo2
rainbow, rainbow1 . . . rainbow4
random, random1 . . . random4
smooth
staircase
stairs8

Use the command TUTORIAL/LUT to see how some of the available LUTs actually look like
and to modify the LUTs interactively.
The main commands available for handling LUTs are:

1–November–1992

6–24 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

LOAD/LUT - load a look–up table
GET/LUT - read back a look–up table
MODIFY/LUT - interactively modify a look–up table
CLEAR/LUT - bypass the look–up table
SET/LUT - pass through a look–up table
DISPLAY/LUT - show the look–up table as a colour bar
CREATE/LUT - create a look–up table using the HSI colour model

Intensity Transformation Tables

The intensity transformation tables (ITTs) come between the image memories and the
LUT and are emulated in the Xwindow environment by convolving the ITT values with
the current LUT. Interactive modification is done via the arrow keys.
The main commands which control the ITT functions are:

LOAD/ITT - load an ITT
CLEAR/ITT - bypass the ITT
SET/ITT - pass through an ITT
GET/ITT - read back an ITT
MODIFY/ITT - modify the ITT interactively

To display the ITT, use DISPLAY/LUT which shows the combined effect of LUT and ITT.
Some of the currently available ITT tables are:

ramp
neg
expo
log
neglog
jigsaw
staircase

With the command TUTORIAL/ITT you can see the effect of ITTs and modify the ITTs
interactively.

Using the Cursors

Each image display has two independent cursors available. One cursor is controlled in-
teractively via the mouse, the other via the arrow keys. In addition, a region of interest

1–November–1992

6.2. IMAGE DISPLAYS 6–25

(ROI) is provided. The ROI is moved via the mouse and its size is adjusted via the arrow
keys.

The cursor position can be read by pressing the ENTER button which is the leftmost but-
ton on the mouse or by hitting the RETURN key. To exit an interactive cursor command,
press the EXIT button which is the button on the mouse to the right of the ENTER button,
i.e. the middle button on a 3–button mouse and the right button on a 2–button mouse.
Currently, a 1–button mouse is not supported in MIDAS. The commands associated with
cursor control operations are:

GET/CURSOR - read cursor positions

CLEAR/CURSOR - disable cursors

Graphics

A graphics (or overlay) channel is provided with the image display. However, it is not a
physical image channel like for the IP8500 display but emulated in software. Only drawing
functions are supported (i.e. you cannot load an image into the overlay channel). The
currently available commands associated with the use of the overlay channel are listed
below:

SET/OVERLAY - enable the overlay of graphics on top of the image
CLEAR/OVERLAY - disable the overlay
DRAW/. . . - draw a geometric shape like CIRCLE, RECTANGLE, etc. in the overlay plane

Alphanumerics

The alphanumerics memory is divided up into 3 lines, the number of characters depends
upon the size of the image display. Three different Font sizes are supported for the al-
phanumeric characters. Commands associated with the alphanumeric memory are:

LABEL/DISPLAY - load a string into the alphanumeric memory
CLEAR/ALPHA - clear the alphanumeric display

There is also an option in the LABEL/DISPLAY command to use the overlay channel for
text instead of the alphanumeric memory.

6.2.3 Image Hardcopy

A hardcopy of a frame shown on the image display or stored on disk can be made only if
the site has appropriate devices (see Appendix C which gives the detailed description of

1–November–1992

6–26 CHAPTER 6. GRAPHIC AND IMAGE DISPLAY

the available options).

Currently grayscale and colour pictures can only be created on Laser printers which sup-
port PostScript. Typical command sequences for image hardcopy are:

LOAD/IMAGE frame ! load image into image display
COPY/DISPLAY ! make hardcopy of screen
or
ASSIGN/DISPLAY device ! assign hardcopy device as display
LOAD/IMAGE frame ! load image to hardcopy

where available devices and special parameters are described in Appendix C. In addition,
a set of device specific commands are normally defined to set it up and to get status
information (see Appendix C).

1–November–1992

Chapter 7

Data Exchange Format

This chapter describes how to exchange data between MIDAS and other systems. MIDAS
supports FITS and IHAP data formats for input while only FITS is available for output.
The general format for exchanging data with other centers is the “FITS” (Flexible Image
Transport System) format. This tape format is described below. The second input format
supported by MIDAS is the so–called “IHAP” format which was developed for use on the
old HP image processing system. Observational data from La Silla may be written in this
format.

It is important to recognise that MIDAS only officially supports the FITS format for
data exchange. The IHAP format is provided for compatibility with the old ESO image
processing systems and the data acquisition systems at La Silla. Other formats are not
supported officially and no help will be provided to access such data.

Note

The internal layout of the MIDAS data files may change with time. The use
of the FITS format for storage and exchange will always ensure that proper
conversions are made. This is not the case with other formats. It is safer for
you to save your data in FITS format, especially if you intend keeping them
on tape for a longer time.

For standard text files such as programs procedures and ASCII data files, operating
systems utilities can be used. Text files can also be saved as FITS headers using ASCII-
catalogues in MIDAS, however, such files can only be decoded by the MIDAS FITS reader.

7.1 Exchange Formats

This section describes the formats supported by MIDAS for exchange of data. Normally
data exchange is done using magnetic tapes, however, MIDAS also supports conversions
between external and internal format directly on disk.

7–1

7–2 CHAPTER 7. DATA EXCHANGE FORMAT

7.1.1 FITS Format

The FITS format provides a general way to encode both a definition of data and the data
themselves in a machine independent form. It is defined in Wells et al. [1], Greisen et
al. [2], Grosbøl et al. [3] and Harten et al. [4] where a detailed description can be found.
The FITS format is recommended by the IAU for exchange of digital information between
astronomical institutes.

A FITS file contains a sequence of logical units which all start with a set of header
records describing the following data records. The logical record length of a FITS file is
always 2880 bytes of 8 bits. Both header and data sections start in a new logical record.
FITS headers are encoded in ASCII as 80 character card images each starting with an
8 character keyword defining the type of information contained on the card. Values of
parameters are decoded using standard FORTRAN–77 rules. They describe in detail the
data following the header records. After the last header/data unit in the file additional
records may exist.

The basic FITS paper specified both a logical and physical record length of 2880 bytes.
The increasing volume of data and higher recording densities made this physical record
size inefficient. To increase storage efficiency and make use of new recording media such as
optical disks and helical scan devices, the FITS standard was extended to allow physical
blocking factors different from one (Grosbøl et al. [3]). The allowed range of blocking
factors is explicitly defined for a given media. For normal 1/2-inch 9-track magnetic
tapes, factors between 1 and 10 were allowed giving a maximum physical block length of
28800 bytes. Each file terminates with a tapemark, and the last file on tape terminates
with a double tapemark i.e. end of information.

7.1.2 MIDAS Implementation of FITS

The MIDAS reader of FITS tapes accepts most of the FITS formats including standardised
extensions. The MIDAS implementation has the following restrictions:

• The maximum number of axes in images is 16

• Only 16 characters are decoded for string variables in the header

• Maximum 512 columns are decoded for tables

• Information in headers without associated data is not stored

7.2 IHAP Format

The IHAP format is defined in the IHAP manual (see section VIII in the March 1985
edition). It is the internal format of the IHAP system. Further, it is used for data
acquisition at the La Silla observatory.

1–November–1991

7.3. HOW TO READ/WRITE TAPES 7–3

7.2.1 MIDAS Implementation of IHAP

The main limitations of the MIDAS reader of IHAP formats are the following:

• Only standard image formats are decoded

• Only tapes written with code 1 specifications are decoded

7.3 How to Read/Write Tapes

This section describes the procedures to read and write magnetic tapes in MIDAS. Before
accessing a tape with the INTAPE or OUTTAPE commands, the appropriate tape has to be
mounted on a tape drive (Note: insert a write-ring when write on a tape). Instructions on
where tape stations are located and how they are operated can be found in Appendix C.

In general the tape read/write commands will first allocate the tape unit and then
position the tape at the first file (in order to make absolute positioning) before they try
to access data on the tape. Depending on the local tape device implementation, the tape
may be rewound after the access.

Note

The default options on the OUTTAPE command will write from the current tape
position. This may over-write previous data on the tape. Be sure to use the
append flag if files have to be added to the tape.

7.3.1 Reading in Data Tapes

After having mounted the tape the INTAPE-command in MIDAS will read it:

INTAPE file list id device [flag]

where files list is a list of absolute position numbers of files on the tape to be read
with 1 being the first file (e.g. 1, 3, 5, 50-60 would read from the 1st, 3rd, 5th file plus files
50 through 60 included), and id is an identification prefix of maximum four characters
on the names of files created. The device is either the logical name of the tape device
(e.g. tape1) or a prefix for writing on disk. If the first four characters of the name are
tape, it is assumed to be a physical device. When a filename prefix is given, the extension
‘.mt’ is used. The correspondence between logical tape names e.g. tape0, tape1, ...
and physical units available at your site can be found in Appendix D. The flag is a list
of three one character flags which specifies the amount of information listed and storage
format of the data (see Appendix A for full description). It is easier to read read many
files from disk if their names are constructed with the given prefix, a four digit number
and the extension ‘.mt’. It is also possible to read a single file from disk by specifying its
full name including extension in which case any extension may be given.

1–November–1991

7–4 CHAPTER 7. DATA EXCHANGE FORMAT

7.3.2 Writing Out Data Tapes

To write out data from MIDAS in FITS format the OUTTAPE command should be used:

OUTTAPE cat[,list] device [flag] [dens,block] [type]

where the cat[,list] is the catalogue of files to be written with an optional list of
numbers. It can be defaulted by giving either ‘*’ or ‘?’ in which case all files in catalogues
set by the SET/xCAT command are written out. The device is either the logical name of
the tape device (e.g. tape1) or a prefix for writing on disk. The disk file should not be
tape because it then would be assumed to be a physical device. Disk files will have the
extension ‘.mt’ by default. It is possible to write a specific file out to disk by giving the
full file name with extension as the cat[,list] entry and its output name with extension
as device. The correspondence between logical tape names e.g. tape0, tape1,... and
physical units available at your site can be found in Appendix D. The flag is an optional
list of three one-character flags specifying the append mode, the amount of information
listed and if the LHCUTS descriptor in the file should be used for scaling (see Appendix A
for full description). The dens,block parameter can specify the tape density (e.g. 1600
or 6250) and a physical blocking factor in the range 1-10. For cartridge tape devices, the
tape density is ignored. The type flag is used to specify the type of FITS format to write
where ‘B’ indicate basic FITS i.e. with integer format only. The default is ‘O’ for original
including floating point representation.

Only files in a catalogue can be written out. In order to make a catalogue with your
files use the CREATE/xCAT and SET/xCAT commands.

1–November–1991

Bibliography

[1] D.C. Wells, E.W. Greisen and R.H. Harten, 1981: Astron. Astrophys. Suppl. Ser., 44,
p. 363

[2] E.W. Greisen and R.H. Harten, 1981: Astron. Astrophys. Suppl. Ser., 44, p. 371

[3] P. Grosbøl, R.H. Harten, E.W. Greisen and D.C. Wells, 1988: Astron. Astrophys.
Suppl. Ser., 73, p. 359

[4] R.H. Harten, P. Grosbøl, E.W. Greisen and D.C. Wells, 1988: Astron. Astrophys.
Suppl. Ser., 73, p. 365

7–5

7–6 CHAPTER 7. DATA EXCHANGE FORMAT

1–November–1991

Chapter 8

Fitting of Data

This chapter deals with the modelling and the analysis of image and table data by fitting
non–linear functions, using least squares approximation. The different non–linear least
squares methods implemented in MIDAS are first shortly described and discussed. The
MIDAS commands dealing with functions or linear combination of functions and with the
modelling process are then presented.

The basic scheme under these commands is to provide the necessary tools to define the
functions entering in the fit, to give initial guesses for the parameters and, in iterations
controlled by the user, find the optimal parameters of the functions. These parameters
can be used to generate fitted data either as images or as columns in tabular form.

Due to the nature of the methods, it is recommended to use these commands in fitting
problems involving small amounts of data. For analysis involving large amounts of data,
like full CCD images, there are algorithms, in the context of 2D–photometry, optimized
for special purpose analyses. A tutorial command (TUTORIAL/FIT) has been introduced
in order to show the capabilities of the package.

A brief description of the implemented methods is included in section 8.1. Section 8.2
describes how to specify functions in the fit. Section 8.3 describes how to include external
functions. The usage of the commands is illustrated in section 8.4. The output of the
programs and their possible interpretation are discussed in section 8.5. An example is
presented in section 8.6, it may be convenient for first time users to run the command
TUTORIAL/FIT while reading this section. Section 8.7 contains a summary of the com-
mands. Finally, the functions supported in the current version are listed in section 8.8.
References can be found in section 8.9.

8.1 Outline of the Available Methods

Let y(x, a) be a function where x = (x1, . . . , xn) ∈ IRn are the independent variables and
a ∈ A ⊂ IRp are the p parameters lying in the domain A. If A is not the whole space IRp,
the problem is said to be constrained.

If a situation can be observed by a set of events (y(i), x(i))i = 1, . . . , m, i.e. a set of
couples representing the measured dependant and variables, it is possible to deduce the

8–1

8–2 CHAPTER 8. FITTING OF DATA

value of the parameters of your model y(x, a) corresponding to that situation. As the
measurements are generally given with some error, it is impossible to get the exact value
of the parameters but only an estimation of them. Estimating is in some sense finding the
most likely value of the parameters. Much more events than parameters are in general
necessary.

In a linear problem, if the errors on the observations have a gaussian distribution, the
“Maximum Likelihood Principle” gives you the “best estimate” of the parameters as the
solution of the so-called “Least Squares Minimization” that follows:

min
a∈A

χ2 (a)

with
χ2 (a) =

∑

i

w(i) [y(i) − y(x(i), a)]2

The expected variance of the so–computed estimator is minimum among all approximation
methods and is therefore called in statistics an “efficient estimator”.

The quantities
r(i)(a) =

√
w(i) [y(i) − y(x(i), a)]

are named the residuals and w(i) the weight of the ith observation that can be, for instance,
the inverse of the computed variance of the observation.

If y(x, a) depends linearly on each parameter aj, the problem is also known as a Linear
Regression and is solved in MIDAS by the command REGRESSION. This chapter deals with
y(x, a) which have a non-linear dependance in a.

Let us now introduce some mathematical notations. Let g(a) and H(a) be respectively
the gradient and the Hessian matrix of the function χ2(a). They can be expressed by

g(a) = 2 J(a)T r(a) and

H(a) = 2 (J(a)T J(a) + B(a))

where r(a) is the residuals vector

r(a) = (r(1)(a), . . . , r(m)(a)) ,

J(a) the Jacobian matrix of r(a) i.e.

J(a)ij =
∂r(i)

∂aj

and B(a) is
B(a) =

∑

i

r(i)(a) Hi(a)

with Hi(a), the Hessian matrix of r(i)(a).
In the rest of the chapter, all the functions are supposed to be differentiable if they

are applied the derivation operator even when this condition is not necessary for the
convergence of the algorithm.

15–January–1988

8.1. OUTLINE OF THE AVAILABLE METHODS 8–3

A certain number of numerical methods have been developed to solve the non–linear
least squares problem, four have so far been implemented in MIDAS. A complete descrip-
tion of these algorithms can be found in [1] and [3], the present document will only give a
basic introduction.

8.1.1 The Newton–Raphson Method.

This is the simplest one. The necessary condition for the function χ2(a) to have an
extremum is that the partial derivatives vanish i.e.

∑

i

r(i) ∂r(i)

∂aj

= 0 (j = 1, . . . , p)

or, equivalently,
J(a)T r(a) = 0 .

This is usually a system of non–linear equations that, numerically, can be solved using the
Newton–Raphson’s method also called in the one–dimensional case the tangents method.
The Taylor development of the function limited to the first order is taken around some
initial guesses of the parameters. The resulting linear system

J(a(k))T J(a(k)) ∆a(k) = −J(a(k)) r(a(k))

gives thus a correction to the solution and

a(k+1) = a(k) + γ ∆a(k)

is taken as the new approximation of the optimum. The relaxation factor γ is a parameter
of the method. The convergence of the process towards the solution of the non–linear
minimization problem has been proven for locally convex χ2(a) or under other assumptions
impossible to detail here. These conditions are not generally fulfilled in real problems.
Moreover, the algorithm ignores the second order conditions and therefore, may end on
a saddle point or never converge. Two different relaxation factors may lead to different
solutions or one may give convergence and the other one not. No general rule can be given
for the choice of a good relaxation factor.

8.1.2 The Modified Gauss–Newton Method.

From a first guess of the parameters a(1), a sequence a(2), a(3), . . . is generated and is
intended to converge to a local minimum of χ2(a). At each iteration, one computes

a(k+1) = a(k) + α(k) d(k)

where d(k) is a certain descent direction and α(k) is a real coefficient which is chosen
such that χ2(a(k) + α(k) d(k)) is approximately minimum. The direction d(k) is ideally the
solution of the Newton equation

H(a(k)) d(k) = −g(a(k))

15–January–1988

8–4 CHAPTER 8. FITTING OF DATA

which can also be rewritten

[J(a(k))T J(a(k)) + B(a(k))] d(k) = −J(a(k)) r(a(k)) .

Neglecting the second derivatives matrix B(a(k)), we obtain the “normal equations” and
the Gauss–Newton direction

J(a(k))T J(a(k)) d(k) = −J(a(k)) r(a(k))

This so–called Gauss–Newton method is intended for problems where ‖B(a)‖ is small.
If the Jacobian J(a) is singular or near singular or if ‖r(a)‖ is very large (the so–called
large residuals problem), the Gauss–Newton equation is not a good approximation of the
normal equations and the convergence is not guaranteed.

The algorithm implemented here is a modification of that Gauss–Newton method,
that allows convergence even for rank deficient Jacobians or for large residuals. The
Gauss–Newton direction is computed in V1 = =m [J(a(k))T J(a(k))], the invariant space
corresponding to the non–null eigenvalues. A correction is taken in V2, the orthogonal of
V1, according to the second derivatives if the decrease of the objective function at the last
iteration is considered too small. The Hessian matrix is estimated using finite differences
of the gradient.

This method requires the availability of the derivatives and as the number of gradient
evaluations is almost p at each iteration, it is recommended for problems with a small
number of parameters, let us say p ≤ 10

8.1.3 The Quasi–Newton Method.

This is identical to the modified Gauss–Newton method, except in the way that the Hessian
matrix is approximated.

This matrix is first initiated to zero. At each iteration, a new estimation of the Hessian
is obtained by adding a rank one or two correction matrix to the last estimate such that
H(k+1), the estimate of the Hessian matrix at the k + 1th iteration, satisfies

(J(a(k+1))T J(a(k+1)) + H(k+1)) (x(k+1) − x(k)) = J(a(k+1)) r(a(k+1)) − J(a(k)) r(a(k))

The so-called BFGS updating formulas are applied in this algorithm

H(0) = 0 H(k+1) = H(k) + C(k)

C(k) =
1

α(k)y(k)T d(k)
y(k)y(k)T − 1

d(k)T W (k)d(k)
W (k)d(k)d(k)T W (k)

where
W (k) = J(a(k+1))T J(a(k+1)) + H(k)

and
y(k) = J(a(k+1))r(a(k+1))− J(a(k))r(a(k)) ,

please see Gill, Murray and Pitfield (1972) for more details. After some iterations and
around the optimum, H(k) converges to the Hessian.

15–January–1988

8.2. FUNCTION SPECIFICATION 8–5

This method requires the knowledge of the derivatives and, as the gradients are only
computed once per iteration and consequently, the Hessian is more roughly approximated
than with the modified Gauss–Newton method, this is better designed for a great number
of parameters i.e. p > 10.

8.1.4 The Corrected Gauss–Newton No Derivatives.

This method is identical to the Gauss–Newton method where the Jacobian is estimated
by finite differences and the Hessian by second order differences.

It does not require the programming of the derivatives but makes a lot of function
computations. Its use has to be restricted to problems where the derivatives are really too
difficult to write. It is slower and less precise than the two last algorithms.

8.2 Function Specification

The functions to be fitted to data are linear combinations of a set of, so called, “basic”
functions. Basic functions are either defined in the system or defined by the user as
external FORTRAN routines. The actual combination of basic functions is defined via an
interactive editor, (MIDAS command EDIT/FIT)

Basic functions are specified by the name, the independent variable(s) and parame-
ter(s), with optional guesses for the parameters, following the syntax:

name(var1[,. . .];par1[,. . .]) [par1=value] . . .

The function name name defines the basic function used, it can be a system function, as
defined in the table 8.1, or a external function with name USER00, ..., USER09. In this
case, the corresponding file(s) USER00.FOR, ..., USER09.FOR will exist in the working area
and will contain the definition of the routines following the syntax described in the next
section.

The number of independent variables of the function is determined by the string
var1[,. . .]. The actual names of the independent variables are considered as dummy
names but their number has to coincide with the actual number of parameters of the func-
tion. All the functions defined in a given fit must have the same number of independent
variables.

Parameters are defined by unique names after the semicolon in the function spec-
ification. Parameters are interpreted according to the position and to the number of
independent variables in the function.

A parameter is generally given a first guess on the same line, as pari=value, it can also
be fixed to a given value or kept proportional to another parameter. The parameter is de-
fined as fixed with the symbol @ immediately following the value as pari=value@. Linear
constrains between parameters are defined as pari=parj*value or pari=parj/value.

According to these rules, a one dimensional gaussian function is specified with the
EDIT/FIT command as

1 GAUSS(X;A,B,C) A=10. B=3200.@ C=1.

15–January–1988

8–6 CHAPTER 8. FITTING OF DATA

where X is the dummy name of the only independent variable, the first parameter, defining
the maximum of the function, is called A, initialized to 10, the second parameter, defining
the position of the gaussian, is called B, and its fixed value is 3200 in world coordinates,
and the FWHM is the parameter C, with initial value 1.

A linear combination of a gaussian and a Cauchy distribution, centered at the same
position is specified as

1 GAUSS(X;A1,B1,C1) A1=10. B1=3200. C1=1.
2 CAUCHY(X;A2,B2,C2) A2=A1/10. B2=B1 C2=4.

in this case, the maximum of the Cauchy distribution is determined by the corresponding
parameter of the Gaussian.

We include in table 8.1 a summary of the system basic functions; the actual mathe-
matical expressions, with the meaning of the function parameters are given in section 8.8.

POLY(X;A,B,...) polynomial (1D, 2D)

LOG(X;A,B,C) natural logarithm

EXP(X;A,B,C) exponential

SIN(X;A,B,C) sinus

TAN(X;A,B,C) tangent

SINC(X;A,B,C) sinc

SINCS(X;A,B,C) sinc square

GAUSS(X;A,B,C) (FWHM) Gaussian distribution (1D)

GAUSS(X,Y;A,B,C,D,E,F) (FWHM) Gaussian distribution (2D)

GAUSSA(X;A,B,C) (Standard) Gaussian distribution (1D)

CAUCHY(X;A,B,C) Cauchy distribution (1D)

CAUCHY(X,Y;A,B,C,D,E,F) Cauchy distribution (2D)

LORENTZ(X,Y;A,B,C,D,E,F) Modified Cauchy (Lorentz) distribution

LAPLACE(X;A,B,C) Laplace distribution

TRIANG(X;A,B,C) Triangular distribution

POISSON(X;A,B,C) Poisson distribution

IGAUSS(X;A,B,C) Integrated (FWHM) Gaussian distribution (1D)

IGAUSSA(X;A,B,C) Integrated (Standard) Gaussian distribution (1D)

Table 8.1: Basic Fit Functions

8.3 External Functions

If the set of basic functions provided by the system as listed below is not sufficient for
your own purpose, it is possible to define user functions. To do this, the user has to
provide the code of the function(s) as a FORTRAN routine, in his own area, in files
named USER00.FOR,... USER09.FOR. The command CREATE/FUNCTION will compile the
routine(s) and link them with the corresponding system programs (primitives). A library
with the local definitions of the routines USER00,. . . ,USER09 and the executable code will

15–January–1988

8.3. EXTERNAL FUNCTIONS 8–7

be created in the user area. With this scheme, it is possible to fit the external functions
USER0i as if they where basic functions.

Here is a template to write a user defined function:

15–January–1988

8–8 CHAPTER 8. FITTING OF DATA

C+
C.NAME
C USER0i
C
C.DESCRIPTION
C ...
C
C.INPUT ARGUMENTS:
C NIND INTEGER Number of independent variables
C X (NIND) REAL Array of NIND elements with the
C independent variable
C NPAR INTEGER Number of parameters
C PARAM (NPAR) DOUBLE PRECISION Array of NPAR elements with the
C values of the parameters
C
C.OUTPUT ARGUMENTS:
C Y DOUBLE PRECISION Value of the function
C DERIV (NPAR) DOUBLE PRECISION Array of NPAR elements with the
C partial derivatives of the
C function for each parameter
C-

SUBROUTINE USER0i(NIND,X,NPAR,PARAM,Y,DERIV)
IMPLICIT NONE

C ..
C .. Scalar Arguments ..

INTEGER NIND,NPAR
DOUBLE PRECISION Y

C ..
C .. Array Arguments ..

REAL X(NIND)
DOUBLE PRECISION DERIV(NPAR),PARAM(NPAR)

C ..
C .. Local Scalars ..

C ..
C .. Local Arrays ..

C ..
C .. Executable Statements

RETURN
END

The variable Y must contain the value of the basic function at the parameter value
PARAM and the array DERIV has to receive the value of the partial derivatives, except if
the method used is CGNND (the abbreviation of Corrected Gauss–Newton No Derivative).
In the user functions, it is recommended to scale the parameters in such a way that their
absolute values lies in a small scale range let us say in [0.1 + 10.]. It is advised to use

15–January–1988

8.4. THE FITTING PROCESS. 8–9

this scheme to test and debug new functions that can later on be included in the system
supported set.

8.4 The Fitting Process.

The typical sequence of operations for a FITting process would be first to create the
approximating function, to choose relatively to your problem and your needs the FIT
options, then to execute the real least squares approximation and finally to store and view
the results. This corresponds to the typical sequence of MIDAS instructions :

EDIT/FIT fitname
SET/FIT options
FIT/... nfeval,prec image (or table and cols)
COMPUTE/FIT output

The commands have been designed so that defaults exists for almost all the parameters,
(see description in Appendix A).

EDIT/FIT has been described in the last section.
The MIDAS command SET/FIT is used to specify the different options of the FIT

command, for instance the method to be applied or the type of used functions. The
instruction

SET/FIT METHOD=CGNND PRINT=1 WEIGHT=S FUNCT=BLACBODY FCTDEF=USER

declares that the Corrected Gauss–Newton no derivatives method is to be applied, that at
each iteration, a display of the intermediate result will be performed, that the weighting
factors are statistical, that the name of the approximating function is BLACBODY, and that
this BLACBODY function which contains user defined functions has already been built in the
user area. The appendix or the MIDAS interactive HELP facility will give you the complete
description of the SET/FIT command.

The command SHOW/FIT displays the actual selected FIT options.
The FIT instruction is performing the least squares approximation itself. It has a

slightly different syntax if the fitting concerns a table or an image.

FIT/TABLE nfeval[,prec,[metpar]] table :depcol[,:wgt] :indcol,. . .
FIT/IMAGE nfeval[,prec,[metpar]] image

nfeval is the maximum number of function evaluations that can be performed, prec
is the precision on the parameters i.e. the program stops if

‖a(solution) − a(found)‖ ≤ prec (1 + ‖a(found)‖) ,

and metpar are the specific method parameters (for instance in NR : the relaxation factor).
The latter have not generally to be given as they can be deduced by the program. For
stiff problems, they can thus be overwritten by the user. Any non–given parameter is
defaulted. Consult the appendix or use the MIDAS interactive HELP to get a complete
description. For instance, the instruction

15–January–1988

8–10 CHAPTER 8. FITTING OF DATA

FIT/IMAGE 100,0.001 PROFILE

executed after the preceeding SET/FIT, will execute a non–linear least squares approxima-
tion using the CGNND method. The program will stop if more than 100 computations of
the approximating function have been performed or if the solution has been found with a
precision of 10−3.

8.5 Outputs

To check any typing error or missing specification, first are displayed the options, the
required precision, the maximum number of function evaluations and the method param-
eters.

The frequency of the intermediate displays are controlled by the SET/FIT PRINT=iter.
It includes the display of the iteration number, the actual number of function evaluations,
the sum of the squares of the residuals, the so-called reduced chi, the percentage of decrease
of the reduced chi since last iteration, and, except for the NR method, the norm of the
gradient and the dimension of the space V1 spanned by the Jacobian. The reduced chi
square is the

χ2(a(k))
degree of freedom

In any case, this is followed by the value of the parameters. Except for the NR method,
the value of the gradient and the singular values of the Jacobian matrix are added.

At the end, a diagnostic message telling you if the convergence was reached or if any
numerical failure occurred during the algorithm. The different messages are:
--> METHOD : Convergence achieved <--

*** ERR-1-METHOD : Bad initializations ... Aborting ***
*** ERR-METHOD : Likely an error in forming the derivatives ***
*** ERR-NR : Problems in inverting matrix ***
*** WARN-2-METHOD : No convergence reached ***
*** WARN-3-METHOD : Final parameters not really satisfactory ***
*** ERR-4-METHOD : No convergence in singular value decomposition ***
*** WARN-5-METHOD : parameters only a good estimation ***
*** ERR-i-METHOD : Final parameters are not satisfactory ***

In the last message i varies from 6 to 8 and the greater i is, the less reliable are the final
value of the parameters. For warnings and errors numbered more than 3, it is recommended
to perform another FITting with different initial guesses. If warning 2 is displayed, do
again the FITting starting with the last computed value of the parameters (nfeval < 0
in the FIT/... command). If an error in the derivatives is reported, check your user
functions code.

The diagnostic will be followed by the covariance matrix if you set iter to a negative
value in SET/FIT PRINT=.

Finally, the found optimal value of the parameters with their estimated standard de-
viation are listed.

15–January–1988

8.6. TUTORIAL 8–11

8.6 Tutorial

A tutorial procedure (TUTORIAL/FIT) shows how to use the fitting package in the simple
case of a 1D–image consisting of two overlapping gaussians on top of a non–linear back-
ground with additional noise. It is recommended to run the tutorial while reading this
section and if possible, on a graphic terminal.

Two functions are copied into your area if you run the example: TEST to generate the
artificial data, and FUNCTION with the “model” to be fitted.

The artificial image, to be used in the example, is created as follows: First it creates a
reference image, called REF, to provide the definition interval of the independent variable.
Then the command COMPUTE/FUNCTION creates the 1D frame with the gaussian profiles
on top of the background. Finally, some noise is added to the data. The resulting frame,
PROFILE is displayed on the graphic screen.

Now the ‘model’ FUNCTION will be fitted to the frame PROFILE, using the command
FIT/IMAGE. The ’model’ was copied into your area already, but you could define it using
the editor as:

EDIT/FIT FUNCTION

This command allows you to create or modify FIT–files (ref Appendix A and Ap-
pendix C for use of the EDIT command on your terminal). In our example, the user will
edit the three basic functions e.g. as follows:

1 GAUSS(X;A1,A2,A3) A1=50. A2=95. A3=45.
2 GAUSS(X;A4,A5,A6) A4=A1 A5=135. A6=A3
3 POLY(X;A,B,C) A=0. B=0. C=0.

where two of the parameters of the second gaussian, height and FWHM, are related to
the parameters of the first Gaussian.

The different fitting methods are then successively applied, changing regularly the
options through the SET/FIT. The exact sequence of instructions is:

SHOW/FIT
FIT/IMAGE 11,1.,0.5 PROFILE FUNCTION
SET/FIT METHOD=CGNND
SET/FIT PRINT=0
FIT/IMAGE 30,.5 PROFILE FUNCTION
SET/FIT METHOD=QN
SET/FIT PRINT=-4
FIT/IMAGE 30,.5 PROFILE FUNCTION
SHOW/FIT
SET/FIT METHOD=MGN
FIT/IMAGE 30,.5 PROFILE FUNCTION

It is possible to compare efficiency, precision and effects.
Finally, the fitted result is computed as:

15–January–1988

8–12 CHAPTER 8. FITTING OF DATA

COMPUTE/FIT FITTED = FUNCTION

and the fitted frame is plotted on top of the original data.
Individual components of the fit can be selected with the command SELECT/FUNCTION.

In the example, the sequence of commands

SELECT/FUNCTION FUNCTION 1,3
COMPUTE/FIT FIT1 = FUNCTION
SELECT/FUNCTION FUNCTION 2,3
COMPUTE/FIT FIT2 = FUNCTION
SELECT/FUNCTION FUNCTION ALL

is used to compute the two gaussian components on top of the background. The results
are also plotted.

The full compatibility between image and tabular formats for input and output means
that, in our example, the fitted parameters can be used to compute fitted values in a table,
using the COMPUTE/FIT command as follows:

COMPUTE/FIT table :outcol = fitname(:incol)

where table is the name of a table containing the independent variable in the column
:incol, fitted values are stored in the column :outcol.

To begin with, it is advised to consult the appendix or use the MIDAS interactive HELP
about EDIT/FIT, SET/FIT, CREATE/FUNCTION, REPLACE/FUNCTION, FIT, FIT/IMAGE,
FIT/TABLE, COMPUTE/FIT.

8.7 Command Summary

Table 8.2 summarizes the commands which are implemented in the context of functions
and least squares fitting.

8.8 Basic Functions

8.8.1 Polynomials (1D and 2D)

POLY (x; a, b, c, . . .) = a + bx + cx2 + · · ·
POLY (x, y; a, b, c, . . .) = a + bx + cy + · · ·

8.8.2 Logarithmic and Exponential Function

LOG(x; a, b, c) = a ln(b + cx)
EXP (x; a, b, c) = a exp(b + cx)

15–January–1988

8.8. BASIC FUNCTIONS 8–13

COMPUTE/FIT outima [= funct[(refima)]]

COMPUTE/FIT table:out[,:error] [= funct[(:col1,. . .)]]

COMPUTE/FUNCTION outima = funct(refima)

COMPUTE/FUNCTION table:out = funct(:col1,. . .)

CREATE/FUNCTION userfunc1[,. . .]

EDIT/FIT [funct]

FIT/IMAGE [nfeval[,prec[,metpar]]] [image[,wgt]] [funct]

FIT/TABLE [nfeval[,prec[,metpar]]] table dep[,wgt] ind [funct]

MODIFY/FIT table seqno [funct]

REPLACE/FUNCTION userfunc1[,. . .]

SAVE/FIT table seqno [funct]

SELECT/FUNCTION funct number[,...]

SELECT/FUNCTION funct ALL

SET/FIT [METHOD=mname] [PRINT=iter] [WEIGHT=wgttyp] [FUNCT=fname] [FCTDEF=where]

SHOW/FIT

Table 8.2: Fitting Commands

8.8.3 Trigonometric Functions

SIN(x; a, b, c) = a sin(b + cx)
TAN(x; a, b, c) = a tan(b + cx)

8.8.4 Sinc and Sinc Square

SINC(x; a, b, c) = a sin(b + cx)/(b + cx)

SINCS(x; a, b, c) = a sinc2(b + cx)

15–January–1988

8–14 CHAPTER 8. FITTING OF DATA

8.8.5 Distributions

GAUSS(x; a, b, c) = a exp
[
− ln 2

(
2(x−b)

c

)2
]

GAUSS(x, y; a, b, c, d, e, f) = a exp
[
− ln 2

(
(x−b)2

d2 + (y−c)2

e2 − 2f(x−b)(y−c)

d e

)]

GAUSSA(x; a, b, c) = a√
(2π)c

exp
[
−1

2

(
(x−b)

c

)2
]

IGAUSS(x; a, b, c) = a
∫ x

−∞ exp
[
− ln 2

(
2(u−b)

c

)2
]
du

IGAUSSA(x; a, b, c) = a√
(2π)c

∫ x

−∞ exp
[
− 1

2

(
(u−b)

c

)2
]
du

CAUCHY (x; a, b, c) = a

[
1 +

(
2(x−b)

c

)2
]−1

LORENTZ(x; a, b, c, d) = a

[
1 +

(
2(x−b)

c

)2
]−d

POISSON(x; a, b, c) = abx exp(−b)

Γ(x+1)

LAPLACE(x; a, b, c) = a exp
[
− ln 2

(
2|x−b|

c

)]

TRIANG(x; a, b, c) = a
(
1− |x−b|

c

)

8.9 References

A good introduction to optimization theory and a description of the the modern mini-
mization techniques can be found in Gill, Murray and Wright [1]. Bard [2] deals with the
particular problem of parameter estimation; chapters concerning the different estimators
and their properties, and the interpretation of the estimates are remarkable. Updating
formulas for Quasi–Newton methods are discussed in [4].

The reading of the cited chapters of [2] will allow an error–free interpretation of the
results of the optimization algorithms. It is therefore recommended.
[1] Gill P.E., Murray W and Wright M.H. . Practical Optimization.
Academic Press. London. 1981.
[2] Bard Y. . Non--linear Parameter Estimation. Academic Press.

15–January–1988

8.9. REFERENCES 8–15

London. 1974.
[3] Gill P.E., Murray W. . Algorithms for the solution of non-linear
least squares problems. SIAM J. of Num. An., vol 15, pp 977-992, 1978
[4] Gill P.E., Murray W. and Pitfield . The implementation of two revised
algorithms for unconstrained optimization. Rep. NAC 11. Nat. Phys. 1972.
Lab., Teddington. England.

15–January–1988

8–16 CHAPTER 8. FITTING OF DATA

15–January–1988

Appendix A

Detailed Command Description

A–1

A–2 APPENDIX A. DETAILED COMMAND DESCRIPTION

15–January–1988

Appendix B

Acknowledgements

B.1 General

It is of course never possible to adequately acknowledge the many small, but extremely
useful, comments which the Image Processing Group have received from many colleagues
both within ESO and outside. Nevertheless, we would like to express our gratitude to
those who have helped to make MIDAS what it is today and hopefully what it will be
in the future. In addition, we would like to try to specifically acknowledge certain major
contributions.

B.2 Packages and Commands

The fitting routines in MIDAS were developed in close collaboration with O. Richter and
later upgraded by Ph. Defert. The INVENTORY programs were developed and written
by A. Kruszewski during his extended visits to ESO. The multivariate statistical package
has been developed in close collaboration with F. Murtagh. The package for 1-dimensional
spectral reductions was designed and tested in collaboration with D. Baade and M. Rosa.
The ROMAFOT package for crowded field photometry was developed by R. Buonanno,
C. Buscema, C. Corsi, I. Ferraro, and G. Iannicolo at the Osservatorio Astronomico di
Roma. The implementation of ROMAFOT in MIDAS was done in collaboration with R.
Buonanno. M. Tapia and A. Moneti collaborated in the development of the IRSPEC reduc-
tion package. Marguerite Pierre developed modelling commands for interstellar absorption
work and contributed to the Long Slit package. P. Stetson created a MIDAS compatible
version of DAOPHOT-II which will be made available to MIDAS sites through ESO on
special request.

The digital filter to remove cosmic ray events from single frames was contributed by P.
Magain and M. Remy. Several routines used in the COMPUTE command for calculations
of airmass, barycentric correction, ST, UT and Julian data were kindly made available by
D. Gillet. The FILTER/ADAPTIVE command was kindly provided by G. Richter. The
OPTOPUS context was implemented by A. Gemmo. The PISCO context was implemented
by M. Schloetelburg and O. Stahl.

B–1

B–2 APPENDIX B. ACKNOWLEDGEMENTS

Significant contributions were added in the application area. A new version of the
graphical user interface XSpectra has been implemented by Cristian Levin. The IR-
SPEC reduction was revised by E. Oliva, while an image restoration and co-addition
application, based on ideas of L. Lucy, was added by R. Hook (ST-ECF). A Time Se-
ries Analysis context, which includes analysis of non-equally spaced data, was made by
A. Schwarzenberg-Czerny. Finally, the PEPSYS context was introduced by A.T. Young
as the first application in a new context for calibrations of point-source photometry.

B.3 Libraries

B.3.1 AGL

The plotting package in MIDAS is based on the low level routines in the Astronet Graphic
Library (AGL) which was developed and is maintained by the Italian ASTRONET. The
implementation of the AGL library in MIDAS was done with the help of L. Fini.

B.3.2 IDI

In the early implementations of IDI routines for XWindows the Trieste Observatory
(Mauro Pucillo, Paolo Santin, Fabio Pasian) provided a prototype for X10 which has
been used for our further developments.

B.4 Manual

This manual has been typeset in TEX and LaTEX using an extensive set of macros provided
by H.-M. Adorf.

1–November–1992

Appendix C

Site Specific Implementation

This appendix describes the site specific hardware setup and implementations used in
ESO, Garching.

C.1 Hardware Setup

This section gives short description of the hardware configuration of the general ESO
computer facilities in Garching used for image processing. The main installation contains
a number of UNIX workstations and Servers (most of which are SUN/SPARC compati-
ble). The logical names of the workstations are wsn where n is a running number. The
Servers have the prefix ns or mc depending on their main function as either file servers
or main computers. In addition several X-terminal are available. All the systems are
interconnected through a Local Area Network using TCP/IP protocols.

C.1.1 UNIX Workstations

A number of SUN/SPARC workstations and X-terminals for general MIDAS use are lo-
cated in the User room 213. They run UNIX and are configured with the X11 window
system. You can login by giving the Userid/Password allocated to you. When working
in the ESO X11 environment, it is necessary to point the cursor on the X11 window in
question to get access to it. Several MIDAS sessions may be run on a workstation at
the same time using the parallel option of MIDAS. After having started MIDAS with
inmidas enter a double digit number (00,..,99) as a MIDAS unit if you want to use image
and graphic displays.

C.1.2 Printer and Plotter Queues

To output listings and hard copies of plots a number of devices can be used. These can
be used through a number of system queues which spool the output to the appropriate
devices. The majority of these printers are PostScript compatible.

To print the log of the MIDAS session the PRINT/LOG command is used. This command
will produce the output on printers, most of which are located in the User room 213 (see

C–1

C–2 APPENDIX C. SITE SPECIFIC IMPLEMENTATION

table C.1).
Hardcopies of plots are made using the ASSIGN/PLOT and the PLOT commands (see

Chapter 6). The first parameter of the ASSIGN/PLOT command specifies the plotting
queue/device to be used. The help command in MIDAS can be used to get an upto date
list of output devices. The following table C.1 gives the default queues and devices:

MIDAS Logical Name UNIX Queue Device

LASER ps2usr1 HP LaserJet III
COLOUR pc2usr0 Tektronix Phaser PX
SLIDE sl2usr0 Chromascript
PENPLOT hp2usr0 HP plotter 7550A, A4
LPRINT lp2usr0 Lineprinter

Table C.1: Printer and Plot Queues

C.1.3 X11 Window systems

Image display windows can be created and deleted from MIDAS using the commands
CREATE/DISPLAY and DELETE/DISPLAY, respectively. Although most MIDAS display com-
mands will work on these window displays, some have to be implemented in software which
makes them slow e.g. ZOOM and SCROLL. The cursor is implemented through the mouse
on which the left button is Enter and the middle button (or right button on a 2 button
mouse) is Exit. When the cursor is positioned on a feature it is also possible to use the
Return key to read the cursor location.

C.1.4 Film Hardcopy

This Section describes the Film hardcopy devices available at ESO, Garching. Systems
for recording 35mm Colour Slides and 70mm B/W negative film are offered.

Film print queues

They are implemented as standard UNIX print queues and can be accessed with the UNIX
lpr command. Files written to a queue must be in the format specified in the table below.

UNIX queue Device Film File format

sl2usr0 Agfa 35mm Colour PostScript
fr0mmf0 Celco 70mm B/W FITS

In the case of Colour Slide the MIDAS command copy/display SLIDE can be used. This
command will both create the PostScript image file and submit it to the slide queue. For
B/W film, the outtape command may be used to create a FITS file on disk which then
can be send to the queue.

1–November–1992

C.1. HARDWARE SETUP C–3

Processing of Film Hardcopies

Depending on the number of entries, images in the B/W and Colour queues will be checked
and activated once per week. Development of the films may take upto two weeks after
which they will be send to the user. Thus, a turn-a-round time of approximately one
month must be expected when using film hardcopy.

C.1.5 Tape I/O

Several half inch magnetic tape drivers are available for either the UNIX or the VMS
systems. Located in the User Room 213, there are four drives connected to UNIX systems
and one drive for the VAX/VMS system. Cartridge tape drives (e.g. QIC, 8mm and
DDS/DAT) are also being installed for general usage in the User Room 213.

They can be accessed from any UNIX workstation on the network. The step by step
procedure is as follows:

• Login on a UNIX workstation.

• Run MIDAS with inmidas.

• Mount your tape on a drive connected (see below). If you want to write on the tape
remember to put a write ring.

• Use the intape and outtape commands to access the tape unit using the logi-
cal device name e.g. tape0. or the physical device name e.g. /dev/nrst0 or
ws1:/dev/nrst0 for a tape unit on remote host ws1 Since the recording density
for UNIX tape units is defined by their name, the device name will overrule the den-
sity given on the command line! During reading the tape drive will itself sense the
tape density used. Thus, the generic tape name can always be given when reading.

• Dismount your tape from the drive so that others can use it.

• Logout from MIDAS with bye and from the workstation.

The logical device names currently defined for magnetic tape drives on UNIX systems
with the following generic notes:

1. An asterisk (*) in front of the MIDAS name indicates that the drive is located in
the computer room and the access is restricted.

2. Tape drives can be selected from any host in the same domain. To get access to
drives in other domains you need to have another account with the same name in
the remote domain.

3. The temporary register accounts used by visitors belong to domain eso.

4. New tapes are from factory write enable.

5. Tapes can be obtained from Rinze de Roos, room 220/1, 2nd floor.

1–November–1992

C–4 APPENDIX C. SITE SPECIFIC IMPLEMENTATION

6. The MIDAS error Permision denied occurs when the given tape is write protected
(check remarks below) or when it is allocated to another user (use deallocate
command)

1/2 inch MAGTAPES:

Midas name Host Device Tape Density Location Domain
∗tape0 ns0 /dev/nrst17 1/2 inch 6250 dpi Room 000 arc
∗tape0h ns0 /dev/nrst17 1/2 inch 6250 dpi Room 000 arc
∗tape0m ns0 /dev/nrst9 1/2 inch 1600 dpi Room 000 arc

tape1 ws1 /dev/nrst18 1/2 inch 6250 dpi User room 2nd fl. eso
tape1h ws1 /dev/nrst18 1/2 inch 6250 dpi User room 2nd fl. eso
tape1m ws1 /dev/nrst10 1/2 inch 1600 dpi User room 2nd fl. eso

tape2 ws1 /dev/nrst19 1/2 inch 6250 dpi User room 2nd fl. eso
tape2h ws1 /dev/nrst19 1/2 inch 6250 dpi User room 2nd fl. eso
tape2m ws1 /dev/nrst11 1/2 inch 1600 dpi User room 2nd fl. eso

tape3 st0 /dev/nrst17 1/2 inch 6250 dpi ECF room 4th fl. ecf
tape3h st0 /dev/nrst17 1/2 inch 6250 dpi ECF room 4th fl. ecf
tape3m st0 /dev/nrst9 1/2 inch 1600 dpi ECF room 4th fl. ecf

tape4 ws0 /dev/nrst19 1/2 inch 6250 dpi User room 2nd fl. eso
tape4h ws0 /dev/nrst19 1/2 inch 6250 dpi User room 2nd fl. eso
tape4m ws0 /dev/nrst11 1/2 inch 1600 dpi User room 2nd fl. eso

tape5 ws8 /dev/nrst18 1/2 inch 6250 dpi SkyLight room 4th fl. eso
tape5h ws8 /dev/nrst18 1/2 inch 6250 dpi SkyLight room 4th fl. eso
tape5m ws8 /dev/nrst10 1/2 inch 1600 dpi SkyLight room 4th fl. eso

REMARKS:

• For each 1/2 tape drive there is three names but actually only two densities, e.g. tape2 (default:
6250 dpi), tape2h (high density 6250 dpi) and tape2m (medium density 1600 dpi).

• 1/2 inch magtape drives have to be set to enable remote density selection: with the drive OFF-LINE
press the button DENSITY until LED ”REMOTE DEN” comes on. The MIDAS name as taken
from the above table and used with command ”INTAPE/FITS” then actually sets the density.

• 1/2 inch magtape drives can read tapes of any density if the drive is set with ”REMOTE DEN” on.
That is, for reading there is no difference between, e.g. tape2, tape2h, and tape2m.

• 1/2 inch tapes are write enable when they are mounted with the write enable ring and the LED
”WRITE ENBL” comes on.

1–November–1992

C.1. HARDWARE SETUP C–5

8mm TAPES (”EXABYTE”):

Midas name Host Device Tape Capacity Location Domain

tape8mm0 ns2 /dev/nrst1 8mm 5.0 Gb IPG room 4th fl. ipg
∗tape8mm1 ns0 /dev/nrst3 8mm 2.2 Gb Room 000 arc
tape8mm2 st0 /dev/nrst3 8mm 2.2 Gb ECF room 4th fl. ecf
tape8mm3 ws8 /dev/nrst4 8mm 2.2 Gb SkyLight room 4th fl eso
tape8mm3 ws8 /dev/nrst1 8mm 5.0 Gb SkyLight room 4th fl. eso
tape8mm4 ws4 /dev/nrst0 8mm 5.0 Gb User room 2nd fl. eso
tape8mm5 ws5 /dev/nrst1 8mm 2.2 Gb User room 2nd fl. eso
∗tape8mm6 mc6 /dev/nrst1 8mm 5.0 Gb Room 000 eso
∗tape8mm7 mc7 /dev/nrst1 8mm 5.0 Gb Room 000 eso

REMARKS:

• 8mm-High drives can also read 8mm-Low density tapes, but not vice versa.

• The 8mm tape is write enable when the red switch in front of the tape is in ”REC” position.

QIC TAPES:

Midas name Host Device Tape Capacity Location Domain
∗tapect0 ns0 /dev/nrst8 QIC-24 60Mb Room 000 arc
tapect1 ws0 /dev/nrst8 QIC-24 60Mb User room 2nd fl. eso
tapect2 ns2 /dev/nrst0 QIC-150 150Mb IPG room 4th fl. ipg
tapect3 ns3 /dev/nrst0 QIC-150 150Mb ECF room 4th fl. ecf
tapect4 ws2 /dev/nrst8 QIC-24 60Mb User room 2nd fl. eso
tapect5 ws3 /dev/nrst8 QIC-24 60Mb User room 2nd fl. eso
∗tapect6 mc6 /dev/nrst0 QIC-150 150Mb Room 000 eso
∗tapect7 mc7 /dev/nrst0 QIC-150 150Mb Room 000 eso
tapect8 ns2 /dev/nrst3 QIC-24 60Mb IPG room 4th fl. ipg
∗tapect9 ns1 /dev/nrst0 QIC-150 150Mb Room 000 eso

REMARKS:

• QIC-150 drives can only write on high density tapes DC600XTD or DC6150 however they can read
QIC-24 low density tapes DC300XL or DC600A.

• QIC-24 drives use only low density tapes DC300XL or DC600A.

• QIC tapes are write protected when the round switch in the tape points to the ”SAVE” position;
write enable otherwise.

1–November–1992

C–6 APPENDIX C. SITE SPECIFIC IMPLEMENTATION

DIGITAL AUDIO TAPES (DAT):

Midas name Host Device Tape Capacity Location Domain

tapedat0 ns2 /dev/nrst2 DDS 1.2Gb IPG room 4th fl. ipg
tapedat1 ws4 /dev/nrst1 DDS 1.2Gb User room 2nd fl. eso
tapedat2 ws5 /dev/nrst0 DDS 1.2Gb User room 2nd fl. eso
tapedat3 ws8 /dev/nrst3 DDS 1.2Gb SkyLight room 4th fl. eso

REMARKS:

• DDS drives use Sony 60/90/120 min. DAT tapes.

• DAT tapes are write enable when the swith in front of the tape closes the hole.

C.2 Operating Systems

The main operating system used for image processing in ESO is UNIX. On the SUN
workstation the X11 window system is used to provide virtual terminals or displays. For
those who are not familiar with UNIX systems this section tries to provide a very basic
introduction. For more information, the interested user is referred to the various UNIX or
SUN publications. A few copies of these manuals and other documentation are available
through the secretaries.

C.2.1 Login Procedures

To login to a computer system you have to hit the return key of the terminal you want
to use. Terminals are connected either directly or through a PBX device which is used
for terminal switching. In the latter case the PBX will ask you to Select Destination
which should be the last three characters of the host-name e.g. ns1/mc6/mc7 for the
central UNIX Servers and ts0/ts1 for general purpose TCP/IP terminal servers. After
this you will get the welcome message of the computer written on your terminal with a
request to give your login identification and password. In case you don’t have an account
on the systems you should contact the System Manager (room 220/2).

C.2.2 Differencies between VAX/VMS - UNIX

This section gives some hints on UNIX commands for people who are more familiar with
the VAX/VMS operating system. There are a number of differencies between UNIX and
VAX/VMS systems. Some of the very basic ones are listed in Table C.2.

C.3 Data Format Compatibility

The internal binary data formats of the VAX and SUN systems are different which makes
it impossible to share data files (e.g. image or table). The SUN systems store data starting
with the most significant bits (i.e. big endian) and use IEEE floating point format while
VAX’s are byte swapped and have a proprietary floating point format.

1–November–1992

C.3. DATA FORMAT COMPATIBILITY C–7

Action/item UNIX VAX/VMS Remarks

Directories top/next/etc [top.next.etc] / is UNIX root
directory

File names name.ext name.ext;ver UNIX is case depen-
dent and has no ver-
sion no

Change directory cd set def

Directory list ls dir

Current directory pwd show def

Online help man help

Text editor vi edit emacs can be used
on all systems

Logout exit logout

Start MIDAS inmidas inmidas

Select MIDAS ver-
sion and options

$setmidas setmidas select the version of
MIDAS

Restart MIDAS gomidas gomidas

Table C.2: Differencies between UNIX - VAX/VMS

In order to exchange data files between these systems it is necessary to use a ma-
chine independent format e.g. FITS. For this reason and because internal MIDAS data
structures may change, it is strongly recommended to save data in FITS format.

1–November–1992

C–8 APPENDIX C. SITE SPECIFIC IMPLEMENTATION

1–November–1992

Appendix D

Release Notes

D.1 Current Status

This appendix contains on the following pages the Release Notes for the 92NOVrelease of
MIDAS. A listing of the MIDAS NEWS-file which gives an overview of the modifications
and improvements of the system for the present release has been added.

D.2 Installation

If you are going to install MIDAS on your system you have received the release tape which is
written in either VAX/VMS BACKUP or tar format with the label 92NOV. This version
of MIDAS can run under DEC/VMS version 4.7 (or higher) or UNIX operating systems.
The monitor and low level interfaces are coded in C which means the portable MIDAS
requires both a FORTRAN-77 and a C compiler for the installation. The installation of
MIDAS has been certified with the public domain GNU C compiler which can be obtained
from the Free Software Foundation.

The instructions for installation are given in separate documents for either VMS or
UNIX systems which are included in the distribution kit. Read the appropriate one care-
fully and proceed as described (the procedure may have been modified compared with
previous installations!). Basic knowledge of your local operating system (e.g. VMS or
UNIX) is assumed and required.

Two areas may require special attention during the first installation. They relate to the
tape I/O routines and image display interfaces. Concerning the latter, MIDAS conforms to
the standard IDI interfaces. IDI’s are provided only for DeAnza IP8500 systems (connected
to VAX/VMS systems) and X-Window version 11. For other display devices a set of IDI
routines has to be written.

For a few commands the NAG mathematical library is required. If you do not have
this library MIDAS can still be installed, however, some commands may not be available.
In future versions we will try to reduce our dependency on NAG. A list of programs using
NAG and the routines are given in Section D.5.

Starting with the 89NOV release a separate installation of the lower level AGL library

D–1

D–2 APPENDIX D. RELEASE NOTES

is no longer required. The library, i.e. those parts needed for the MIDAS plot facilities,
is fully integrated within the MIDAS directory structure and will be generated as every
other MIDAS subroutine library. For a full installation of the AGL library refer to the
Astronet Documentation Facility, Trieste.

D.3 Software Modifications

The MIDAS release 92NOV is the 8th official release of portable MIDAS. This release
contains the main body of MIDAS commands, however, some procedures and packages
have not yet been fully verified. A number of new applications have been added to the
version. Given below is a list of the known deficiencies, changes and improvements com-
pared with the previous release:

Deficiencies:

1. The CCD context is not yet available.

2. The command UNION/TABLE is not implemented

Improvements:

1. The Table File system has been upgraded significantly by allowing single table entries
to contain arrays of values.

2. The FITS reader/writer (IN/OUTTAPE) now supports the new Binary Table and
Image extensions. OUTTAPE will now write tables in Binary format by default.

3. The PostScript output files from plot and display hardcopy commands are now
written in Encapsulated PostScript File (EPSF) format.

4. The Time Series Analysis context has been implemented.

5. A programme for scheduling Photometric observations has been added as the first
component of a Photometry context.

6. The IRSPEC context has been revised and improved.

7. A number of Graphical User Interfaces (GUIs) are now available in this release on a
trial basis. They include XHelp, XEchelle, XSpectra and XFilter. The three latter
ones are based on the MIT X11 widget set, whereas XHelp is using OSF/Motif. The
ESO standard for GUIs has not been finalised yet, which means that the current set
of GUIs will be significantly modified in the next release to conform to this standard.

It should be possible to install XHelp on all systems having the OSF/Motif software.
The MIT X11 based GUIs have only been tested on Sun Sparc systems and may
give installation problems on other systems.

8. The command VIEW/IMAGE, which we recommend for first viewing of your data,
has been enhanced significantly.

1–November–1992

D.4. MANUAL UPDATES D–3

For a complete list of all updates/additions use the MIDAS command HELP [NEWS]
after having installed this release. A hardcopy of it can be obtained via PRINT/HELP
[NEWS].

D.4 Manual Updates

Several sections of the MIDAS User’s Manual have been updated in this release. Only
these parts are included in the package you receive. Users are referred to the on-line
help facility which contains all the latest updates. Please note that due to typographical
problems, the underscore in the printed helpfiles has been printed as an inverted comma.

Please replace the old pages in your MIDAS User’s Manual with the new ones. A list
of the parts to be replaced is given below :

• Volume A, Titlepage
• Volume A, Chapter 3 to be replaced.
• Volume A, Chapter 5 to be replaced.
• Volume A, Chapter 6 to be replaced.
• Volume A, Appendix A to be replaced.
• Volume A, Appendix B to be replaced.
• Volume A, Appendix C to be replaced.
• Volume A, Appendix D to be replaced.
• Volume A, Appendix E to be replaced.
• Volume B, Titlepage
• Volume B, Chapter 6 to be replaced.
• Volume B, Chapter 7 to be replaced.
• Volume B, Chapter 8 to be replaced.
• Volume B, Chapter 14 to be added.
• Volume B, Chapter 15 to be added.
• Volume B, Appendix A to be replaced.
• Volume B, Appendix E to be replaced.
• Volume B, Appendix G to be replaced.
• Volume B, Appendix H to be replaced.
• Volume B, Appendix J to be added.

D.5 Use of NAG Library

The NAG mathematical library is still used in several MIDAS commands. A list of these
programs and routines are given below:

1–November–1992

D–4 APPENDIX D. RELEASE NOTES

Program Package NAG Routines

fitimag Fit e04fdf, e04fcf, e04gcf, e04hev,
e04gbf, e04gef, e04gdf, e04ycf,
e04jaf, e04hbf, e04jbf, e04kaf,
e04hcf, e04kbf, e04kcf, e04kdf

genran General g05cbf, g05ddf, g05daf, g05dbf,
g05def, g05edf, g05eyf, g05ecf,
g05dff

A set of dummy routines are provided for sites that do not have a NAG library. This new
implementation gives them the possibility of using the FIT package (in this case, only the
Newton-Raphson method will be supported).

1–November–1992

