

Автор: Grace Treanor

V379 Vir — слабо аккрецирующий поляр с коричневым карликом

Сусликов М.В.^(1,2), Колбин А.И.^(1,2), Борисов Н.В.⁽¹⁾, Буренков А.Н.⁽¹⁾

- 1. Специальная астрофизическая обсерватория РАН
- 2. Казанский (Приволжский) федеральный университет

Поляры (тип AM Her)

Поляры (тип *AM Her*) – катаклизмические переменные с сильным магнитным полем (В ~ 10⁶ - 10⁷ Гс). Излучение имеет высокую степень поляризации. Механизм аккреции – захват вещества магнитным полем белого карлика.

Характерные особенности:

- Магнитное поле БК ~ 10⁶ 10⁷ Гс.
- $P_{orb} = 70 220$ мин. Синхронизация P_{orb} и P_{rot}
- Аккреционная струя (баллистическая + магнитная)
- Аккреционная колонка (высота H ~ 0.01 0.1 R_{wd})

Структура аккреционной колонны и основные механизмы охлаждения

Ранние исследования V379 Vir

- Катаклизмическая переменная, Р_{огb} ≈ 90 мин (Schmidt и др. 2005)
- Фотометрическая переменность в видимом диапазоне (Burleigh и др., 2006)
- Избыток потока в ИК континууме коричневый карлик L5-L7 (Debes и др. 2006); переменность в K_s кривой блеска – циклотронное излучение.
- ИК спектры V379 Vir коричневый карлик L8 + циклотронное излучение (Farihi и др., 2008)
- Кривые блеска в среднем ИК сильная циклотронная переменность (Harrison и др. 2015)
- Темп аккреции: 10⁻¹⁴ М_☉/год (Stelzer и др. 2017)

Наблюдения и обработка данных

Фотометрические наблюдения

Телескоп РТТ-150 / TFOSC Национальная турецкая обсерватория TUBITAK Дата наблюдений: 7-8 апреля 2022 Полоса пропускания – В системы Джонсона Время одной экспозиции – 120 сек.

Спектральные наблюдения

Телескоп БТА / SCORPIO-1

Специальная астрофизическая обсерватория РАН

Автор: Сусликов М.В.

Автор: Жучков Р.Я.

Дата наблюдений	Наблюдатели	Дисп. элемент	Диапазон спектра, ÅÅ	Время экспозиции, сек	Кол-во спектров
07-08 мая 2007	Борисов Н.В., Шиманский В.В.	VPHG1200G	4000 – 5700	300	15
25-26 апреля 2022	Буренков А.Н.	VPHG550G	4000 – 7300	300	22

Обработка полученных данных: IRAF + python-скрипты (astropy, ccdproc, и т. д.) Применен метод psf-фотометрии. Выполнена оптимальная экстракция спектров.

Дополнительные данные

Потоки из каталогов MAST, SDSS, VizieR

- Swift UVOT UVW2
- GALEX FUV/NUV
- SDSS ugriz
- VISTA ZYJHK_s

ИК кривые блеска

- PANIC JHK_s (Debes и др., 2006)
- Spitzer IRAC I1, I2, I3, I4 (3.6 8.0 мкм) (Harrison и др., 2015)

Спектральное распределение энергии

Структурированная область аккреции

Бомбардировочный режим аккреции $T_{\text{max}} = 1.90 \times 10^8 \dot{m}_{-2}^{0.42} B_7^{-1.08} M_*^{0.66} \text{ K}$ $x_{\text{s}} = 9.89 \times 10^{-3} \dot{m}_{-2}^{0.30} B_7^{-0.79} M_*^{1.72}$

Критерий выполнения (Campbell, 2008): $\dot{m}B_7^{-2.6} < 0.1~{
m g~s^{-1}~cm^{-2}}$

Температурный профиль $\log t = \alpha (\log z - \epsilon)^{-n} + \beta (\log z - \epsilon) + \gamma$ $t = T/T_{\max}(\dot{m}, B, M)$ $z = x/x_{s}(\dot{m}, B, M)$ $\alpha = -0.0374$ $\beta = 0.2082$ $\gamma = 0.2220$

 $\epsilon = 0.2005$

U. Woelk, K. Bauermann. (1993)

Уравнение переноса излучения

Спектральное распределение энергии

Спектральное распределение энергии

Определение масс

- Аналитическая зависимость «масса радиус» для белых карликов (Nauenberg, 1972)
- Аналитическая зависимость «масса радиус» для вторичных компонент в КП (Knigge и др., 2011)

Оценка темпа аккреции

$$\begin{split} L_{\rm acc} &\approx L_{\rm x} + L_{\rm cyc} \\ L_{\rm acc} &= \frac{G\dot{M}M_{\rm wd}}{R_{\rm wd}} \\ \dot{M} &= 2.05 \times 10^{-13} M_{\odot}/{\rm rog} \end{split} \qquad \begin{split} \dot{M} &= \dot{m}S_{\rm spot} \\ S_{\rm spot}/S_{\rm wd} &= 0.007 \\ \dot{M} &= 3.2 \times 10^{-13} M_{\odot}/{\rm rog} \end{split}$$

Параметры компонент

	Белый карлик	Коричневый карлик
T _{eff} , K	11320 ± 70	1400 ± 160
log (g)	8.09 ± 0.13	4.7 ± 0.5
R, R $_{\odot}$	0.0119 ± 0.0003	0.116 ± 0.024
M, ${\rm M}_{\odot}$	0.640 ± 0.037	0.057 ± 0.05

Спектральные особенности

Динамические спектры

Кривая лучевых скоростей

Интерпретация кривой блеска РТТ-150

Аккреционное пятно на поверхности БК обращено в сторону вторичной компоненты

Доплеровская томография слабой эмиссии Н_а

90° **0**° 2.0 1.5 1.0 0.5 0.0 270°

 (v, θ) [10³ km s⁻¹, degrees]

Marsh, Horne 1988 Коtze и др. 2015, 2016

Магнитное поле

Атом водорода в магнитном поле

Flux, * 10⁻¹⁶ erg s⁻¹ cm⁻² Å⁻¹

log B, [MG]

Магнитное поле

Модель БК со смещенным диполем

Магнитное поле площадки

$$B = \frac{B_m}{2} \left(\frac{1-a}{s}\right)^3 (3\cos^2 \epsilon + 1)^{1/2}.$$

Среднее наблюдаемое магн. поле

 $\bar{B} = \frac{\sum S_i B_i L_i \cos \gamma}{\sum S_i L_i \cos \gamma}$

$$Q = \sum_{i}^{n} \frac{1}{\sigma_i^2} (B_i^{obs} - \bar{B}_i)^2$$

Поиск параметров методом минимизации Нелдера-Мида

Log Reduced Chi-squared

Конфигурация системы

ИК кривые блеска

Моделирование ИК кривых блеска

Пример разбиения пятна на сегменты

Модель белого карлика с горячим пятном.

$$\begin{split} F_{j,k} &= \sum_{i,j,k} E_{i,k} S_i \cos \gamma_{i,k} \int_{\lambda_1}^{\lambda_2} I_{i,k}(\lambda) R_j(\lambda) d\lambda \\ S_i &= \text{площадь сегмента} \\ \cos \gamma_{i,k} &= \text{проекция нормали на луч зрения} \\ \chi^2 &= \sum_{i,j} \frac{\left(cF_{i,j} - F_{i,j}^{obs}\right)^2}{\sigma_{i,j}^2} \to \min \end{split}$$

Сравнение теоретических и наблюдаемых кривых блеска V379 Vir в рамках модели структурированного горячего пятна.

Полученные результаты

- Определены параметры компонент системы V379 Vir на основе моделирования спектрального распределения энергии.
- Получены оценки темпа аккреции и размера излучающей области на основе описания спектрального распределения энергии в рамках модели вертикально-структурированного циклотронного источника.
- По слабой эмиссии Н_α получена кривая лучевых скоростей вторичной компоненты.
- Наложены ограничения на область допустимых значений наклонения орбиты.
- На основе анализа зеемановского расщепления бальмеровских линий получена кривая изменения среднего магнитного поля.
- Восстановлена конфигурация магнитного поля белого карлика в рамках дипольного приближения.