Нелинейные пульсации красных гигантов

Ю.А. Фадеев

ИНАСАН

эволюция звезд с начальной массой $M_{\rm ZAMS} \lesssim 8 M_{\odot}$ связана с термоядерным горением водорода и гелия

эволюция на стадии TP-AGB

продолжительность стадии TP–AGB определяется скоростью потери массы \dot{M}

эволюция на стадии TP-AGB

продолжительность стадии TP-AGB определяется скоростью потери массы \dot{M}

- отсутствие ясной методики вычисления M основной недостаток теории
- данные наблюдений (Ramstedt et al., 2009)

• Соотношение масса СО-ядра – интервал между гелиевыми вспышками (Уус 1970, Пачинский 1975):

 $\log \Delta t(yr) = 3.05 - 4.5 \left(M_{\rm CO} / M_{\odot} - 1 \right)$

Например, $\Delta t \approx 5 imes 10^3$ лет при $M = 4 M_{\odot}$, $\Delta t \approx 10^5$ лет при $M = 1.5 M_{\odot}$

- В течение $\approx 5\%$ времени эволюции на стадии TP-AGB в звезде отсутствует тепловое равновесие вследствие быстрых изменений радиуса R и светимости L
- Анализ архива кривых блеска AAVSO показывает (Templeton et al. 2005), что около 5% мирид обнаруживают статистически значимые изменения периода
- Наиболее яркие мириды с вековыми изменениями периода: LX Cyg, R Aql, U Cyg, R Cen, R Hya, RU Vul, S Ori, S Sex, W Dra, *o* Cet, T UMi
- Необходимые условия применимости теории звездных пульсаций гидростатическое и тепловое равновесие

$$\Pi \sqrt{ar{
ho}/ar{
ho}_{\odot}} = Q$$

• Как следует из результатов численных экспериментов, область применимости теории звездных пульсаций ограничивается условием

$$\delta_{\mathrm{L}} = \max_{1 \le j \le N} \left| 1 - \frac{L_j}{L_0} \right| \lesssim 10^{-2},$$

где L_j – полная светимость (лучистая и конвективная) в j-й массовой зоне модели

 уравнения 1D радиационной гидродинамики дополнены транспортными уравнениями (Kuhfuß, 1986, Astron. Astrophys. 160, 116)

$$\mathbf{F}_{\rm c} = \alpha_{\rm s} \Lambda \rho T E_{\rm t}^{1/2} \nabla S \tag{1}$$

$$\mathbf{F}_{\mathrm{t}} = -\alpha_{\mathrm{t}} \Lambda \rho E_{\mathrm{t}}^{1/2} \nabla E_{\mathrm{t}}$$
(2)

где S – удельная энтропия, $E_{\rm t}$ – средняя кинетическая энергия турбулентных движений газа, $\Lambda = \alpha H_{\rm P}$ – средняя длина пути перемешивания

- в стационарном случае при $\alpha_{\rm s}=rac{1}{2}\sqrt{rac{2}{3}}$ уравнение (1) полностью совместимо с теорией конвекции Böhm–Vitense (1958)
- уравнение (2) описывает эффекты овершутинга на границах конвективной устойчивости

виды решения нелинейной теории звездных пульсаций

устойчивость относительно радиальных колебаний

 $\langle R \rangle \to R$

виды решения нелинейной теории звездных пульсаций

виды решения нелинейной теории звездных пульсаций

Эволюционные изменения R и Π Z = 0.014 $M_{\rm ZAMS} = 2.0$ $\alpha_{\Lambda} = 1.80$ $\eta_{\rm R} = 0.50$ $\eta_{\rm B} = 0.05$ f = 0.1262.5 $\log R/R_{\odot}$ 2.02.5log∏ (day) .• ## . . 2.0 . . 0 $t_{\rm ev}$ (Myr)

- 50 d $\lesssim \Pi \lesssim$ 700 d
- колебания в фундаментальной моде или первом обертоне не зависят от Π

Эволюционные изменения R и Π Зоны ионизации Н. Не и Не⁺ Z = 0.014 $M_{ZAMS} = 2.0$ $\alpha_A = 1.80$ $\eta_B = 0.50$ $\eta_B = 0.05$ f = 0.126Y = 0.28 Z = 0.014 $M_{\text{ZAMS}} = 2M_{\odot}$ $\eta_{\text{R}} = 0.5$ $\eta_{\text{B}} = 0.05$ 2.5 $\Gamma_1 = (\partial \ln P / \partial \ln \rho)_S$ 1.6 $\log R/R_{\odot}$ 1.4 2.0 $He^+ - He^{++}$ He – 1.2 $H - H^+$ $M = 1.93 M_{\odot}$ $t_{\rm ev} = 1.75 {\rm Myr}$ $i_{\rm TP} = 12$ 8 2.5 $\log \Pi (day)$ $M = 1.54 M_{\odot}$ $t_{\rm ev} = 2.43 {\rm Myr}$ $i_{\rm TP} = 20$... 17. $\log T$ 2.0 6

4

0

r/R

• 50 d $\lesssim \Pi \lesssim$ 700 d

0

• колебания в фундаментальной моде или первом обертоне не зависят от Π

 $t_{\rm ev}$ (Myr)

пульсации в фундаментальной моде и первом обертоне

пульсации в фундаментальной моде и первом обертоне

1 На стадии колебаний предельной амплитуды

$$\int_{0}^{M} dM_r \oint P dV = 0$$

- Основной вклад в раскачку колебаний мирид вносят слои частичной ионизации водорода
- $\ref{schemotics}$ Колебания в первом обертоне возникают в том случае, когда слои чистично ионизованного водорода ($x_{
 m H}\lesssim 0.5$) остаются выше узла обертона $\langle r
 angle pprox 0.8 \langle R
 angle$
- Эволюционное увеличение радиуса R сопровождается смещением внутренней границы зоны ионизации водорода по направлению к центру. Таким образом, проэволюционировавшие мириды пульсируют в фундаментальной моде

зависимость период-светимость (предварительные результаты)

каждая звезда AGB эволюционирует вдоль зависимости $\Pi-L$ в сторону увеличения периода

изменения L и R на стадии тепловой вспышки

1 при радиальных колебаниях $\Pi \propto R^{3/2}$ и поэтому $\max L_{3\alpha}$ ($t_{\rm ev}=0$) приблизительно совпадает с началом сокращения периода Π

 ${f 2}$ скорость изменения периода ${ar \Pi}$ является чувствительным индикатором массы звезды M

этапы изменения радиуса на стадии тепловой вспышки

- $t_{
 m ev} < t_0$ водородная оболочка находится в тепловом равновесии
- $t_0 < t_{
 m ev} < t_1$ сжатие оболочки из-за прекращения энерговыделения водородного слоевого источника

 $t_1 < t_{
m ev} < t_2$ выход во внешние слои радиационнодиффузионной волны и расширение оболочки

- $t_2 < t_{
 m ev} < t_3$ сжатие оболочки вследствие затухания радиационно–диффузионной волны
- $t_{
 m ev} > t_3$ восстановление энерговыделения водородного слоевого источника и возвращение к тепловому равновесию

возрастание поверхностного содержания атомов углерода (3rd Dredge-Up)

характерные времена изменения L и R, связанные с гелиевой вспышкой

стадии уменьшения L и R

T UMi

- первое упоминание (Pickering & Fleming 1906)
- по данным ОКПЗ Т UMi обычная мирида с периодом $\Pi \approx 300$ сут и амплитудой изменения блеска от $V_{\rm min} = 15$ до $V_{\rm max} = 7.8$ (Самусь и др., 2017)
- в 1970-х гг. период изменения блеска Т UMi начал быстро сокращаться (Gál &Szatmáry, 1995; Mattei & Foster, 1995)
- приблизительно неизменное значение периода до 1970-х гг. указывает на то, что наблюдаемое сокращение периода связано с прекращением энерговыделения водородного слоевого источника, а начало уменьшения Π соответствует $\max L_{3\alpha}$

гидродинамическая модель Т UMi до 1970-х гг.

период модели совпадает с наблюдаемым значением $\Pi^{\star}=315$ сут в пределах 5%

Гидродинамические модели с нестационарными внутренними граничными условиями

- результаты гидродинамических расчетов полностью согласованы с эволюционными изменения структуры звездной оболочки за исключением эффектов потери массы.
- ullet различие между значениями массы эволюционной и гидродинамической моделей $\delta M/M \lesssim 10^{-4}.$

эволюционные изменения П и П

 $\Pi = t(R_{\max})_{i+1} - t(R_{\max})_i$

эволюционные изменения П и П

 $\Pi = t(R_{\max})_{i+1} - t(R_{\max})_i$

ограничение на массу звезды со стороны 3rd dredge-up

образование $n:\,{}^{12}{\rm C}(p,\gamma){}^{13}{\rm N}(\beta^+,\nu){}^{13}{\rm C}(\alpha,n){}^{16}{\rm O}$

ограничение на массу звезды со стороны 3rd dredge-up

признак 3rd dredge-up: изменение соотношения

образование $n: {}^{12}{
m C}(p,\gamma){}^{13}{
m N}(\beta^+,\nu){}^{13}{
m C}(\alpha,n){}^{16}{
m O}$

- Отсутствие линий поглощения изотопа ⁹⁹Tc (т ≈ 2.1 × 10⁵ лет) в спектре T UMi (Uttenthaler et al. 2011) свидетельствует о том, что в этой звезде еще не начался 3rd Dredge–up
- Критерий 3DUP позволяет исключить из рассмотрения эволюционную последовательность $M_{\rm ZAMS}=2.0 M_{\odot},~\eta_{\rm B}=0.10$

модели мириды T UMi

$M_{ m ZAMS}$ (M_{\odot})	$\eta_{ m B}$	$i_{\rm TP}$	$M \ (M_{\odot})$	П (d)	$\dot{\Pi} \ ({ m d/yr})$	Δt (yr)
1.3	0.02	8	1.04	311	-3.31	31.1
1.4	0.02	9	1.14	314	-3.35	26.9
1.5	0.02	10	1.24	318	-3.20	31.4
1.6	0.02	11	1.36	320	-3.50	30.7
1.7	0.05	10	1.38	318	-3.37	29.2
1.8	0.10	11	1.32	312	-3.28	29.5
T UMi				315	-3.5	30

переключение моды колебаний ($\Pi_1/\Pi_0 \approx 1/2$)

оконное преобразование Фурье (short-time Fourier transform)

R Hydrae

Наблюдения

- начальное значение периода $\Pi_a \approx 500$ сут
- конечное значение периода $\Pi_bpprox 380$ сут
- продолжительность сокращения периода $\Delta tpprox 200$ лет

Результаты расчетов

- значения Π_a и Δt не совместимы с предположением, что сокращение периода происходит на первом этапе уменьшения радиуса звезды
- согласие с наблюдаемыми значениями $\Pi_a, \Pi_b, \Delta t$ получено для моделей мирид с массой $4.4 M_\odot \leq M \leq 4.6 M_\odot$ на стадии затухания радиационно–диффузионной волны
- теоретические оценки радиуса R Нуа $(420R_{\odot} \leq R \leq 450R_{\odot})$ для интервала от 1950 г. до 2000 г. находятся в согласии с наблюдательной оценкой $R = 442R_{\odot}$ полученной методом оптической интерферометрии (Haniff et al. 1995) при расстоянии 126 пк (Gaia DR3)

(Zijlstra et al. 2002)

заключительные замечания

Возбуждение радиальных пульсаций мирид происходит в слоях частичной ионизации водорода

- Возбуждение радиальных пульсаций мирид происходит в слоях частичной ионизации водорода
- 2 Мириды пульсируют в первом обертоне лишь в том случае, когда внутренняя граница зоны ионизации водорода находится выше узла обертона ($r\gtrsim 0.8R$)

- Возбуждение радиальных пульсаций мирид происходит в слоях частичной ионизации водорода
- 2 Мириды пульсируют в первом обертоне лишь в том случае, когда внутренняя граница зоны ионизации водорода находится выше узла обертона ($r \gtrsim 0.8 R$)
- Одна из причин полуправильных изменений блеска связана с нелинейностью колебаний, амплитуда которых возрастает с течением времени эволюции

- Возбуждение радиальных пульсаций мирид происходит в слоях частичной ионизации водорода
- 2 Мириды пульсируют в первом обертоне лишь в том случае, когда внутренняя граница зоны ионизации водорода находится выше узла обертона ($r\gtrsim 0.8R$)
- Одна из причин полуправильных изменений блеска связана с нелинейностью колебаний, амплитуда которых возрастает с течением времени эволюции
- **4** Зависимость период–светимость мирид является совокупностью эволюционных треков отдельных звезд AGB на диаграмме ΠL

- Возбуждение радиальных пульсаций мирид происходит в слоях частичной ионизации водорода
- 2 Мириды пульсируют в первом обертоне лишь в том случае, когда внутренняя граница зоны ионизации водорода находится выше узла обертона ($r\gtrsim 0.8R$)
- Одна из причин полуправильных изменений блеска связана с нелинейностью колебаний, амплитуда которых возрастает с течением времени эволюции
- **4** Зависимость период–светимость мирид является совокупностью эволюционных треков отдельных звезд AGB на диаграмме ΠL
- Благодаря сильной зависимости изменений периода от массы звезды на стадии тепловой вспышки существует возможность определения фундаментальных параметров AGB звезд на основе анализа наблюдаемых вековых изменений периодов мирид

Спасибо за внимание!