Химически пекулярные Ар/Вр звёзды на ранних стадиях эволюции.

# И.С. Потравнов



#### ИСЗФ СО РАН ilya.astro@gmail.com

Конференция "Физика звёзд: теория и наблюдения", ГАИШ МГУ

27.06.2023

## Химически пекулярные звёзды

- <br/>о $\sim 15\%$  sp:А-В звёзд на ГП с пекулярными спектрами.
  - Аномалии хим.состава в области формирования линий
  - В среднем по массе нормальный состав!
- Ар/Вр, Не-реq. звёзды:
  - ${\rm O}$  Избытки содержаний:  $\log(N_X/N_X^{\odot}) \lesssim 5~{\rm dex}$ тяжёлых элементов.

• Магнитные поля до ~30 кГс.





Рябчикова, 2014

| Таблица | 2: | Классификация | СР-звезд |
|---------|----|---------------|----------|
|---------|----|---------------|----------|

| Интервал температур | Магнитные звезды | Немагнитные звезды |
|---------------------|------------------|--------------------|
| 7000-10000          | Ap, SrCrEu       | Am, $\lambda$ Boo  |
|                     | A3-F0            | A0-A1              |
| 10000-14000         | Ap Si            | Ap Hg-Mn           |
|                     | B8-A2            | B6-B9              |
| 13000-18000         | He-weak Si,SrTi  | He-weak P Ga       |
|                     | B3-B7            | B4-B5              |
| 18000-22000         | He-strong        |                    |
|                     | B1-B2            |                    |

Романюк, 2007



Ryabchikova, 2011

## Химически пекулярные звёзды

# Селективная диффузия элементов в атмосфере (Michaud, 1970):

- Градиенты содержаний: вертикальные + горизонтальные (пятна)
- Объяснение данных наблюдений:
  - Воспроизведение профилей линий
  - Разделение изотопов (Не, Са)
  - Зависимость эффекта от  $T_{eff}$
- Современные динамические модели (Stift&Alecian, 2016): предсказание 3D распределения элементов в замагниченной атмосфере звезды.







## Химически пекулярные звёзды



Эволюционный момент проявления химической пекулярности?

- Механизмы потери углового момента
- Генерация и стабилизирующая роль магнитного поля
- Наблюдательные ограничения на времена диффузии
- о Все ли РМЅ А-В звёзды проходят фазу НАеВе?



# Ар/Вр звёзды на фазе до ГП

- Большинство Ap/Bp звёзд объекты поля.
- Статистическое наличие СР звёзд в молодых ( $\log t \approx$ 6 Myr) скоплениях: Abt, 1979; Netopil+2015, Semenko+2022
- Известно небольшое число Pre-MS Ар/Вр звёзд:
  - О Пекулярные Ae/Be звёзды Хербига (V380 Ori A, AK Sco B, LkHα215)
  - Члены РЗС и областей звездообразования (Stock 16-12, NGC 224-334, BD+30<sup>0</sup>549, LkHα324/B)
- ⇒ Условия для формирования СРпаттерна могут закладываться ещё на PMS фазе.









# Пекулярные Ае/Ве звёзды Хербига

- АК Sco B солнечное содержание, V380 Ori A избыток лёгких элементов (He, C, N, O)
- о Слабы<br/>е $({\sim}0.2\text{-}0.5~{\rm dex})$ избытки элементов железного пика и лантано<br/>идов (AK Sco B)

Механизм?

- Диффузия конкурирует с аккрецией.
- Turcotte&Charbonneau, 1993 ( $T_{eff} = 8000K$ ):
  - о При темпе  $\dot{M} \gtrsim 10^{-13} M_{\odot}/yr$ , поверхностный химический состав соответствует составу аккрецированного вещества.
  - о В течении  $\sim 10^6$ лет сохраняется "память" об аккреционном эпизоде.
  - Сглаживание градиентов, формируемых диффузией.



## Пекулярные Ае/Ве звёзды Хербига



Turcotte&Charbonneau, 1993

# Пекулярные Ае/Ве звёзды Хербига

- о Необходимы расчёты в большем диапазоне  $T_{eff}$ ' и учёт ветра.
- Реализация механизма возможна при эпизодической аккреции, наблюдаемой на поздних стадиях аккреционной эволюции.
- Альтернативные механизмы? Селективная аккрециия ионов в присутствии сильного магнитного поля? (Havnes&Conti, 1971).



## РМЅ Ар/Вр звёзды в областях звездообразования

- Не аккрецирующие объекты.
- Расположены в активных областях звездообразования
- Подсвечивают отражательные туманности связь с родительским материалом.





# BD+30°549: спектроскопия



## Параметры и эволюционный статус



о ИК избыток: тепловое излучение transitional или debris диска

• Переменность *F*<sub>24µm</sub>: 2003-2013 гг.

о Столкновения планетозималей на расстоянии  $\sim 50$  a.e. от звезды?



## BD+30°549: ЛТР содержания



• He-weak: < 2.4 dex по отношению к Солнцу.

- о Умеренный дефицит металлов, исключая Si, Fe, P, Ca
- <br/> О Si в избытке  $\sim 2.2~{\rm dex}$
- ${\sf o}$  Fe, Si: разница в содержаниях по двум ионам ("Si II/III anomaly" ).
- о Различные содержания по ядрам и крыльям сильных линий (Si II, Mg II)

 $\mathsf{o} \Rightarrow$ не<br/>ЛТР эффекты? Градиенты содержаний в атмосфере?

## BD+30°549: неЛТР анализ



не<br/>ЛТР для Mg II, Ca II, Si II/III:  $\circ$ Умеренные поправк<br/>и $\Delta_{NLTE}$ для Mg и Ca

- о Гораздо лучшее воспроизведение линий Si на $\log \tau_{5000} < -3$
- Различие Si II/III порядка 0.53 dex по прежнему сохраняется



# BD+30°549: стратификация содержаний

#### Ступенчатая функция:

- Для Fe, Мg: падение содержаний в верхних слоях, рост вглубь атмосферы
- Качественное согласие с расчётами LeBlanc+2009, но градиенты содержаний более крутые - эвол.эффект?
- Распределение Si описывается плохо.







### BD+30°549: фотометрическая переменность, вращение

#### ASAS-SN: 2017-2022 *g*-band кривая блеска:

- Переменность  $\Delta V \approx 0.2^m$
- Период Р=123.3<sup>d</sup>
- Вращательно-модулированная переменность ⇒ температурные пятна на поверхности (как у многих Si-звёзд). Необходимо учитывать при моделировании линий Si в спектре звезды.
- о  $V_* < 1 \text{ km/s}$  хорошо согласуется со спектроскопическим  $V \sin i \Rightarrow$  звезда наблюдается с экватора.
- BD+30°549 потеряла (или не приобрела) угловой момент на PMS фазе



## $LkH\alpha 324/B$ и облако LDN988

#### O L988 Активное звездообразование: эмиссионные звёзды (Herbig: 1950-е, 2006), молек.истечения (Clark, Declination (2000) 1986).НН-объекты (Walawender+2013).

- LkH $\alpha$ 324 cluster:  $\bar{t} \approx 0.6$ Myr (Herbig&Dahm, 2006)
- $\circ$  LkH $\alpha$ 324/B Ар звезда? (Chavarria, 1984; Herbig&Dahm, 2006)
- $\circ$  LkH $\alpha$ 324/B источник молекулярного истечения и оптического джета (Clark, 1986; Walawender+2013)



Herbig&Dahm, 2006



# LkH $\alpha$ 324/В: параметры атмосферы

- KeckI/HIRES CIEKTP: 06.07.2003 (PI: G. Herbig),  $R \approx 48000$
- Спектральный синтез + аппроксимация SED (Potravnov+2023b):
  - $T_{eff} = 11175 \pm 100 \text{ K}$
  - $\log g = 4.2 \pm 0.1$
  - ${\rm o}\;\xi_t=0\pm 1.5~{\rm km/s}$
  - $\circ V \sin i = 22 \pm 1.5 \text{ km/s}$
  - $A_V = 2.2^m$
  - ИК избыток:  $T_{bb} \approx 300 \text{ K} \Rightarrow диск$



## Магнитное поле

- Переменность блеска
- Наличие джета
- Магнитная интенсификация линий: ⟨В⟩≈3.5 kG(:) (Спектрополяриметрия: см.доклад И.Якунина 27.06.2023)
- $\circ \Rightarrow$  LkH $\alpha 324/B$ недавно испытала период аккреционной активности, т.е. прошла фазу магнитной Ае звезды Хербига.



Walawender+2013



## Параметры и эволюционный статус



 $\rm LkH\alpha 324/B$  находится в конце своего PMS трека (начало CNO-цикла)

### $LkH\alpha 324/B:$ вращение





- Период Р= $2.39^d \Rightarrow V_{eq} = 49 \text{ km/s}$
- ${}^{\circ}V\sin i{=}22~{\rm km/s} \Rightarrow \\ i\approx 27^{\circ}$



• Согласие с моделью наклонного ротатора

о $V_{eq}$ у LkH<br/>а324/В меньше характерной скорости осевого вращения А-В звёзд на PMS фаз<br/>е $(V_{eq}\gtrsim\!\!150~{\rm km/s})$ 



# LkH $\alpha$ 324/B: ЛТР содержания

- Дефицит лёгких элементов (He, C ,O)
- Избыток эл-тов железного пика и РЗЭ (Pr, Nd)
- О Пониженное содержание Ва: [Ba/H] <0.9 dex (по отн. к Солнцу)
- Для элементов в двух стадиях ионизации: Si, Fe, Cr соблюдается ионизационный баланс.
- Отсутствие выраженного вертикального градиента Fe, Cr при данной T<sub>eff</sub> - в согласии с диффузионными расчётами (LeBlanc+2009).



# LkH $\alpha$ 324/В: ЛТР содержания



Рябчикова&Романовская, 2017

Распределение содержаний LkHα324/В характерно для Ap звёзд на ГI 21/22

### Заключительные замечания

- ① Как Ае/Ве звёзды Хербига, так и не аккрецирующие PMS А-В звёзды могут обладать аномалиями химического состава Ар/Вр типа.
- 2 Механизмы формирования наблюдаемых паттернов могут быть различными. Селективная диффузия играет определяющую роль у неаккрецирующих объектов и обуславливает формирование вертикальных и горизонтальных градиентов содержаний на шкале ~ 10<sup>6</sup> лет.
- Э Условия, для эффективной диффузии: медленное вращение, стабилизация атмосферы закладываются на PMS фазе или ещё раньше.
- ④ Околозвёздные диски и взаимодействие звезды с ними играют значительную роль в характере и временной шкале эволюции поверхностных содержаний молодых Ap/Bp звёзд.
- (5) Необходимо дальнейшее расширение выборки для заполнения эволюционной последовательности Ар/Вр звёзд.