

Переменность оптических и рентгеновских спектров звезд типа у Cassiopeia

⁴Главная (Пулковская) обсерватория

¹Санкт-Петербургский государственный университет ²Крымская Астрофизическая обсерватория Специальная астрофизическая обсерватория

А.Ф. Холтыгин¹, Е.Б. Рыспаева^{1,2}, И.А. Якунин³, О.А Циопа⁴

26-30 июня 2023 года

МГУ, ГАИШ

Всероссийская конференция с международным участием

Физика звёзд: теория и наблюдения

Звезды типа у Cas

Звезды типа у Cas – подкласс (1%) Ве звезд

Ве звезды делятся на 2 группы: классические Ве звезды и Ве звезды Хербига (звезды на стадии эволюции до главной последовательности)

Профили линий в спектрах Ве звезд (Rivinius et al. 2013, A&AR, 21, id 69)

Механизм формирования декреционных дисков не до конца известен. Многие модели их образования требует наличия магнитного поля. В то же время ни у одной Ве звезды магнитное поле не обнаружено

Магнитное поле с В≥10 Гс разрушает декреционный диск (ud-Doula et al. 2018)

09/21/22

y Cassiopeia type stars (y Cas analogs)

Оптические спектры звезд типа gamma Cas не отличаются от спектров других **Ве звезд**. Звезды этого типа выделяются по их аномальному рентгеновскому спектру.

Характеристики звезд типа у Cas (у Cas analogs):

- 1) Звезды типа у Cas подкласс Be/Oe звезд;
- 2) Рентгеновская светимость $L_x 10^{31} 10^{33}$ эрг/с;
- 3) Температура плазмы звезд типа γ Cas type достигает 10-20 кэВ или более, предполагая, что рентгеновское излучение полностью тепловое;
- Жесткость рентгеновского спектра звезд типа γ Cas (отношение потоков в жесткой и мягкой части рентгеновского спектра) превышает 50%.;
- 5) Рентгеновское излучение переменно на шкалах времени вплоть до минут.

К настоящему времени известно 25 звезд типа у Cas и 2 кандидата. 16 звезд этого типа могут наблюдаться в России (8>-10°)

Spectra of **y** Cas type stars obtained during the Large Programs for Looking for superfast Variability of OBA Stars: 9 stars/6350 spectra

Star	Sp.Type	V	\mathbf{N}_{sp}	Exp (s)	Telescope	Spectrograph	Dates	Total # of spectra
			150	60	6-m BTA	MSS	04.11.2020	
y Cas	B0.5IVpe	2.39	138	60	6-m BTA	MSS	1-2.2.2021	4324
			1576	2	1.25-m ZTE	A-sp	13-14.9.2020	
			2460	1.5	1.25-m ZTE	A-sp	7-8. 9.2021	
HD 45314	O9:npe	6.64	20	600	6-m BTA	MSS	5-8.1.2020	20
SAO 49725	B0.5III/IVe	9.27	432	5	6-m BTA	SCORPIO	17-18.08.2021	432
ζ Tau	B1IVe	3.03	51	120	6-m BTA	MSS	12.01.2023	51
π Aqr	B1III-IVe	4.64	1250	5	1.25-m ZTE	A-sp	10.10.2021	1250
V2156 Cyg	B1.5Ve	8.91	7	20	6-m BTA	SCORPIO	18.08.2021	7
HD 45995	B1.5Vne	6.14	208	30	1.25-m ZTE	A-sp	10.10.2021	225
			17	300	1.25-m ZTE	MSS	12.01.2023	
V810 Cas	B2 D	8.59	12	600	6-m BTA	MSS	12.01.2023	12
V558 Lyr	B3Ve	6.34	29	180/300	6-m BTA	MSS	12.01.2023	29

An analysis of X-ray spectra of y Cas type stars

The X-ray spectra in the range 0.2-8keV were extracted from the frames obtained by EPICcamera of the XMM-Newton X-ray observatory. Next models are used for the X-ray spectra approximations:

APEC (Astrophysical Plasma Emission Code, Smith et al, 2001) and **MEKAL**(Mewe, Kaastra, Liedahl,1995) describe the stationary thermal radiation of a plasma in which atoms are ionized by electron impact.

PSHOCK (Borkowski et al, 2001) – Model of a shock wave in the plasma describing the nonstationary thermal X-ray radiation/ This model has an additional parameter, the ionization time. **PL(Power law)** – the power component which is used to describe the possible non-thermal radiation

Parameters of the X-ray Spectra:

Двойственность

ЦВОИСТВО	енность				BZ Cru, d=438
	M ₁ =13-15 M	$I_{\odot}, R_1 = 10 R_{\odot}$	∍ i=45°		pc, Be + WD?
y Cas	M2=0.98 M d=188 pc, P	$_{\circ}$ (F-G star) $P_{\circ rb}$ =203.1-20)3.7 d		НD 161103 d=1270 пк
πAqr	$M_1 = 11 \pm 1.5$ $M_2 = 1.8 \pm 0.2$	$M_{\odot}, R_1 = 6.1 \pm M_{\odot}$ (A-F sta	±2.5 R _⊚ i=70 ar)		А,В,С компоненты 1-5 М _о , <mark>R~550-1550 а.</mark> ι
	d=239 pc, P _c	_{orb} =84.1 d			Keck/NIRC2 vor
		M (Be)	M _{comp}	i (°)	tex coronagraph
Star	P, d	(M_{\circ})	(M_{\odot})		10 двойных
V 782 Cas	122	9	0.6-07	60-9	90 (кратных)
HD 45995	103.1	10	1.0 ± 1	47	3Везд/25 звезд
V 558 Lyr	83.3	8	0.7-0.8	60-9(0
SAO 4972	5 26.1	13	0.2-0.5	30-90	0
	137		0.4-0.7	30-90	0
V2156 Cy	g 126.6	11	0.7-0.8	60-90)
V810 Cas	75.8	12.5	0.7-0.8	60-90	
Naze et al M	MNRAS 510	$\overline{)}$ 2286 (202	2)		

Анализ спектральной переменности

$$F_i(\lambda) = F(\lambda, t=t_i)$$

Нормированные профили, полученные в момент времени **t=t**_i

$$\overline{F(\lambda)} = \frac{1}{n} \sum_{i=1}^{n} F_{i}(\lambda)$$

Средний профиль линии

$$d_i(\lambda) = d(\lambda, t_i) = F(\lambda, t_i) - \overline{F(\lambda)}$$

Разностный профиль d_i(λ,t)

09/21/22

у Cas – спектральная переменность

Переменность рентгеновских спектров звезд типа у Сая

Рентгеновские спектры **у Cas** в 2010 и 2014 гг.

Переменность профиля рентгеновской детали на 6.7 кэВ

$$E(\kappa \mathbf{B}) = \frac{12.39851}{\lambda(A)}$$

Значимых вариаций профиля не обнаружено

09/21/22

у Cas – переменность рентгеновского излучения (0.2-10 кэВ)

Observations: XMM: 24.07.2010, 2.08.2010, 20.08, **24.07.2010**

Periods, minutes $\alpha = 10^{-3}$

Opt	X-ray
183 ± 111	200 ± 74
59 ±11	63 ± 7
45 ±6	48 ± 4
19 ±1	17 ± 1
10.7 ± 0.4	11.8 ± 0.3

The correspondence of the optical and x-ray periods

12.01.2023 БТА, ОЗСП

d=668 pc E(B-V)=0.12

HD 45995

No. comp	P, min	α
1	37.3±13.3	10-5
2	87.5±72.5	10 -5

Fourier spectra of LPVs in spectra of HD 45995

Кривые блеска TESS и Фурье-спектры вариаций блеска

тер метр	5 фото- ия	HD 45995		
No	ν, d^{-1}	P, days		
1	0.070	14.35±8.72		
2	0.151	6.63±1.86		
3	0.255	3.91±0.65		
4	1.049	0.95±0.04		
5	1.184	0.8443±0.0009		
6	2.067	0.95±0.01		
7	2.129	0.47±0.01		
8	2.179	0.46±0.01		
9	2.255	0.44±0.04		

Периоды вариаций блеска по наблюдениям TESS различаются в разные эпохи (2018/2019 и 2020/2021)

Генерация рентгеновского излучения звезд типа у Cas

Механизмы:

- 1) Компактный компонент a) NS (Postnov et al., 2017) b) WD (Vieira et al. 2017)
- 2) Взаимодействие декреционного диска с локальными магнитными полями звезды (Smith et al. 2016)
- Нетепловое излучение в результате обратного комптоновского рассеяния UV фотонов на релятивистских электронах: Chen & White (1991) model
- 4) Аналоги солнечных вспышек
- 5) Что-то еще неизвестное

Взаимодействие между системами магнитных петель звезды типа у Сая и декреционного диска в экваториальной плоскости. Показаны потоки заряженных частиц, ускоренных в области перезамыкания магнитных силовых линий

Smith_et al., AdvSpRes, **58 (2016)**

Выводы

- У всех звезд типа у Cas обнаружена регулярная переменность профилей линий в оптической области спектра с периодами от минут до часов;
- Обнаружена переменность рентгеновского блеска звезд типа у Сая на шкалах времени вплоть до минут;
- Периоды вариаций профилей линий оптического спектра звезд типа Сая соответствуют периодам изменений их рентгеновского блеска;
- Большой вклад жесткого рентгеновского излучения звезд типа у Сав в области энергий 2-8 keV может быть объяснен вкладом и теплового и нетеплового излучения (40-90%) в полный рентгеновский поток;
- 1. В фотометрических TESS кривых блеска обнаружены вариации с периодами от часов до дней, причем амплитуда и частота таких вариаций меняются в разные эпохи наблюдений

Спасибо за внимание

