

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Фундаментальные параметры систем типа SU UMa и WZ Sge

Дудник А.А., Шиманский В.В.

Катаклизмические переменные звезды

Катаклизмические переменные с дисковой аккрецией.

Расположение точек перетекания масс — точек Лагранжа.

SU UMa

- Являются подклассом карликовых новых
- •Вспышки с Δ mv 2-6 ^m. и длительностью 1-3 ^d.
- \bullet Сверхвспышки с Δ mv 2-7 m . и длительностью 10-18 d .
- ${}^{ullet}M_2{=}0.10$ +/- $0.04M_o$ —средняя масса вторичной компоненты.
- ${}^{\bullet}$ М ${}_{1}$ = 0.76 +/- 0.19 M ${}_{o}$ —средняя масса первичной компоненты.

WZ Sge

- •Подгруппа типа SU UMa.
- •Сверхвспышки с Δ mv= 6^{m} — 9^{m} в течение 14- 22^{h} .
- •Возвращение в начальное состояние происходит за время 60-200 суток.
- •Перед и в момент максимума вспышки на кривой блеска появляются колебания с амплитудой $\Delta mv = 0.2\text{--}0.4^{m}$,- сверхгорбы.
- ${}^{ullet} M_2 = 0.084 + / 0.008 M_o$ средняя масса вторичной компоненты.

•H. Ritter VizieR On-line Data Catalog (2011).

•N. Katysheva, S. Shugarov, N. Borisov (2015).

Исследование оптических спектров карликовой Новой в низком состоянии

Сравнение наблюдаемых и теоретических спектров GSC02197–00886.

А.А.Митрофанова, Н.В.Борисов, В.В.Шиманский, (2014).

Наблюдения

Все спектральные наблюдения выполнены на БТА САО РАН с применением редуктора светосилы первичного фокуса SCORPIO-1 (Афанасьев & Моисеев, 2005), гризмы VPHG1200G (1200 штрихов/мм) и ПЗС - приемника EEV CCD42-40 (2048*2048 пикселов размером 13.5*13.5 мкм) с одинаковой экспозицией 300 секунд. В диапазоне: 4000-5300 A, с разрешение: 5 A.

ПЗС-изображение объекта FL Psc

Первичная обработка наблюдаемых спектров

Нормированный спектр системы FL Psc

При реализации методики автоматического определения параметров

- 1) Применяли набор синтетических спектров
- В программном комплексе ATLAS12 (Castelli & Kurucz 2003) рассчитаны сетки моделей атмосфер белых карликов с параметрами:

$$T$$
eff = 10 000–90 000К с шагом ΔT eff = 2000 K, log $g=6.5$ –9.5 с шагом $\Delta \log g=0.25$, при [He/H] = -3 dex и [M/H] = -5 dex

•Теоретические спектры рассчитывались с использование программы STAR (Менжевицкий и др. 2014).

2. Реализация методики интерполяции спектров на произвольные значения $T_{\rm eff}$ и $\log g$.


```
---- T<sub>eff</sub>=21000K, logg=8.1

---- T<sub>eff</sub>=20000K, logg=8.0

---- T<sub>eff</sub>=22000K, logg=8.25

---- T<sub>eff</sub>=22000K, logg=8.25

---- T<sub>eff</sub>=21000K, logg=8.1 (STAR)
```

Интерполяция спектра с параметрами Teff =21000K и log g =8.1 из 4-х спектров.

3. Интерполяция теоретического спектра на сетку наблюдаемых длин волн.

4. Определение интервала для анализа наблюдаемых спектров в низком состоянии

Диапазоны согласования теоретического и наблюдаемого спектра.

Влияние параметров Teff и logg на теоретический спектр

5. Рассчитывалось среднеквадратичное отклонение теоретического спектра от наблюдаемого $S = \sqrt{\sum_{d} \sum_{\lambda_{c}}^{\lambda_{a}} (F_{\lambda teor} - F_{obs}(\lambda))^{2} / N}$

6. Получили сетку среднеквадратичных отклонений для разных Teff и log g и карту распределений среднеквадратичных отклонений.

11

Описание наблюдаемого спектра

Моделирование система FL Psc

QW Ser

Porb=0.076858 d

Карта распределения СКО Наблюдаемый и теоретический спектр

Teff= 23500 +/- 400К и logg= 8.36 +/- 0.05 dex

QZ Lib

Porb = 0.064362 d

Карта распределения СКО

Наблюдаемый и теоретический спектр

Teff=9500 +/- 300К и logg=9.0 /- 0.45 dex

V355 UMa

Porb=0.057308 d

Карта распределения СКО Наблюдаемый и теоретический спектр

Teff=22000 +/- 2000К и logg=8.5 +/- 0.2 dex

V521 Peg

Porb = 0.059861d

Наблюдаемый и теоретический спектр Карта распределения СКО Teff=28000 +/- 1000К и logg=8.6 /- 0.2 dex

Возможные источники погрешности возникающие при анализе наблюдаемых спектров

1. Неправильная нормировка наблюдаемых спектров.

Результат неправильной нормировки наблюдаемого спектр WZ Sge и карта распределения СКО, соответственно

2. Не правильно выбранные диапазоны описания спектра.

Не правильно расставленные диапазоны согласования спектров. Красная стрелка указывает на линии, вошедшие в интервалы согласования

Массы и радиуса БК были найдены по трехпараметрической зависимости

Трехпараметрическая зависимость M-R-T для БК (слева) с кислородным ядром и наложенными системами (красная точка-TY Psc, синяя – FL Psc, зелёная — V455 And).

J.A.Panei, L.G.Althaus (2000).

Определение параметров вторичной компоненты

- 1) Задавались наборы значений $q=M_2/M_1$
- 2) Вычислялись (M₂) и (A)
- 3) Рассчитывались RL₂
- 4) Вычислялись значения (R_2)
- 5) Альтернативные значения R_2

5) Альтернативные значения R2

Сравнение зависимостей M-R вторичных компонент (цветные линии) со звездами Главной последовательности.

Полученные параметры исследуемых систем

Парамет	TY Psc	FL Psc	V455	V355	WZ Sge	QW Ser	V521 Peg:	QZ Lib
ры			And	UMa				
T _{eff} [K]	25000+/- 2500	22500+/- 2500	22000+/- 2500	22000+/ -2000	22500+/ -2500	23500 +/- 400	28000 +/-1000	9500+/ - 300
Log g	8.3+/15	8.2+/15	8.2+/15	8.5+/-0.2	8.5+/-0.2	8.4+/0.2	8.6+/-0.2	>8.55
$M_1[M_o]$	0.74+/- 0.02	0.72+/- 0.02	0.72+/- 0.02	0.92+/- 0.08	0.94+/-	0.82 +/- 0.03	0.96 +/- 0.10	> 0.93
$R_1 [R_o]$	0.0109+/- 0.0001	0.011+/-0.0001	0.011+/- 0.0111	0.0086+/- 0.0014	0.0085+/- 0.0014	0.0099 +/- 0.0004	0.0081+/- 0.0014	>0.0085
$M_2[M_o]$	0.139+/-	0.114+/-	0.113+/-	0.11+/-	0.11+/-	0.16+/-	0.12+/-	>0.13
$R_2 [R_o]$	0.159+/-	0.132+/-	0.130+/-	0.13 +/- 0.01	0.13+/-	0.18+/-	0.14+/-	>0.15
A [R _o]	0.674+/-	0.587+/-	0.582+/-	0.633+/-	0.635+/-	0.757+/-	0.660+/-	>0.687

22

Спасибо за внимание!

При реализации методики автоматического определения параметров были решены следующие задачи

- 1. Расчет набора синтетических спектров для сетки моделей БК в диапазоне $T_{\rm eff}$ 10 000–90 000К с шагом 2000К и $\log g$ 6.5–9.5 с шагом 0.25. В диапазоне 3900 5400А.
- 2. Реализация методики интерполяции спектров на произвольные значения $T_{\rm eff}$ и $\log g$.

$$\begin{split} F_{Teff} = & F(T_{eff}^{1}) + \begin{pmatrix} F(T_{eff}^{1}) - F(T_{eff}^{2}) \\ T_{eff}^{2} - T_{eff}^{1} \end{pmatrix} (T_{eff} - T_{eff}^{1}) \\ F_{\log g} = & F(\log g^{1}) + \begin{pmatrix} F(\log g^{1}) - F(\log g^{2}) \\ \log g^{2} - \log g^{1} \end{pmatrix} (\log g - \log g^{1}) \end{split}$$

Определение параметров вторичной компоненты

- 1)Задавались наборы значений $q=M_2/M_1$
- 2) Вычислялись (M₂) и (A)
- 3) Расчитывались RL2
- 4) Вычислялись значения (R_2)
- 5) Альтернативные значения R2

$$R_{L2} = 0.49 * \frac{q^{\frac{2}{3}}}{0.6 * q^{\frac{2}{3}} + \ln(1 + q^{\frac{2}{3}})}$$

$$\left(\frac{A'}{A_{3eM}}\right)^3 = (M_1 + M_2) \left(\frac{P_{orb}}{365.25}\right)^2$$
 $A = A', \frac{A_{3eM}}{R_{3eM}}$

Объекты	Параметры	Ручной анализ	Автоматический анализ	
TY Psc	T _{eff} [K]	22000+/-1300	25000+/-2500	
	log g	8.2+/-0.09	8.2+/-0.15	
FL Psc	$T_{\rm eff}[K]$	19000+/-1300	22500+/-2500	
	log g	8.3+/-0.09	8.2+/-0.15	
V455 And	$T_{\rm eff}[K]$	19000+/-1300	22000+/-2500	
	log g	8.0+/-0.09	8.2+/-0.15	

Анализ	Параметры	TY Psc	FL Psc	V455 And
Ручной	$M_1[M_o]$	0.72 +/- 0.06	0.78 +/- 0.06	0.60+/- 0.06
	$R_1 [R_o]$	0.0111+/- 0.0007	0.0103+/- 0.0007	0.0125+/- 0.001
Автоматический	$M_1[M_o]$	0.74+/-0.02	0.72+/-0.02	0.72+/-0.02
	$R_1[R_o]$	0.0109+/-0.0001	0.0110+/-0.0001	0.0110+/-0.0001
Литературный	$M_1[M_o]$	0.7+/-0.14 [1]	0.75+/-0.05	0.6

1. Guillaume D.(2018) 2. C. Knigge, (2006). 3. P. Szkody, A. S. Mukadam, (2013).

Анализ	Параметры	TY Psc	FL Psc	V455 And
Ручной	$M_2 [M_o]$	0.138+/- 0.005	0.113+/- 0.005	0.112 +/- 0.005
	$R_2 [R_o]$	0.158+/-0.002	0.131+/-0.002	0.130+/-0.002
	R_{L2} $[R_o]$	0.154+/-0.005	0.137+/-0.002	0.136+/-0.002
	A [R _o]	0.672+/-0.002	0.601+/-0.002	0.557+/-001
Автоматический	$M_2 [M_o]$	0.139+/- 0.005	0.114+/- 0.005	0.112+/- 0.005
	R_2 $[R_o]$	0.159+/-0.002	0.132+/-0.002	0.130+/-0.002
	R_{L2} $[R_o]$	0.159+/-0.005	0.132+/-0.002	0.137+/-0.002
	A [R _o]	0.674+/-0.002	0.587+/-0.002	0.582+/-0.001

Анализ	Параметры	TY Psc	FL Psc	V455 And
Ручной	$f(M_2) [M_o]$	1.05*10-3	0.57*10 ⁻³	0.19*10-3
Автоматически	$f(M_2) [M_o]$	1.06*10-3	1.94*10 ⁻⁴	0.19*10-3
	i [deg]	42	27	27

- 1. Papadaki C. (2009)
- 2. Templeton M.R. (2006)
- 3. Araujo-Betancor S. (2005)

Определение параметров вторичной компоненты

- 1)Задавались наборы значений $q=M_2/M_1$
- 2) Вычислялись (M₂) и (A)
- 3) Рассчитывались RL₂
- 4) Вычислялись значения (R₂)
- 5) Альтернативные значения R_2

Теоретико-эмпирическая формула Игглтона:

$$R_{L2} = 0.49* \frac{q^{\frac{2}{3}}}{0.6*q^{\frac{2}{3}} + \ln(1+q^{\frac{2}{3}})}$$

Иглтон (P.P. Eggleton), Astrophys. J. (1983)

При реализации методики автоматического определения параметров

- 1) Применяли набор синтетических спектров
- В программном комплексе ATLAS12 рассчитаны сетки моделей атмосфер белых карликов с параметрами:

$$T$$
eff = 10 000–90 000К с шагом ΔT eff = 2000 K, log $g=6.5$ –9.5 с шагом $\Delta \log g=0.25$, при [He/H] = -3 dex и [M/H] = -5 dex

- Учитывались все источники непрерывного поглощения линии HI, He I, He II с уширением согласно теориям Вайдл—Куппер—Смитта и Грима.
- Бралась шкала солнечных содержаний химических элементов из работы Андерса и Гревесса.
- Теоретические спектры рассчитывались с использование программы STAR.

Влияние параметров Teff и logg на теоретический спектр

Требования к описанию наблюдаемых спектров

