ОЦЕНКА СПИНА СВЕРХМАССИВНЫХ ЧЕРНЫХ ДЫР СЕЙФЕРТОВСКИХ ГАЛАКТИК ПЕРВОГО ТИПА С УЗКИМИ ЭМИССИОННЫМИ ЛИНИЯМИ

М.Ю. Пиотрович, С.Д. Булига, Т.М. Нацвлишвили

Главная (Пулковская) астрономическая обсерватория РАН, Санкт-Петербург mpiotrovich@mail.ru

Введение

Существует много типов галактик с активными галактическими ядрами (АЯГ), например, Сейфертовские галактики, квазары, объекты BL Lac и радиогалактики. Среди этих типов галактик различают два типа, которые определяются свойствами их эмиссионных линий, а именно: Сейфертовские галактики 1 типа (Sy1) и Сейфертовские галактики 2 типа (Sy2) [1]. Галактики Sy1 демонстрируют как широкие разрешенные эмиссионные линии из области широких линий (BLR) шириной несколько тысяч км/с, так и узкие линии запрещенного излучения из области узких линий (NLR) шириной несколько сотен км/с. Галактики Sy2 характеризуются узкими разрешенными и запрещенными линиями в спектрах их излучения [2]. Согласно модели Антонуччи [3], оба типа галактик Sy1 и Sy2 имеют схожую внутреннюю структуру, а различия в их спектрах в основном обусловлены ориентационными эффектами. Хотя различия между галактиками Sy1 и Sy2 хорошо определены, тем не менее, были обнаружены галактики с узкими разрешенными эмиссионными линиями, похожие на галактики Sy2, но обладающие всеми спектральными свойствами источников Sy1. Эти галактики были классифицированы как галактики Sy1 с узкими линиями (NLS1) [4]. Галактики этого типа характеризуются следующим: 1) полная ширина на полувысоте (FWHM) широкой линии H_в< 2000 км/с [5]; 2) слабые эмиссионные линии [OIII] относительно H_{β} с [OIII] λ 5007/Hb < 3 [4,6]; 3) сильные эмиссионные линии FeII относительно H_в в ультрафиолетовой и оптической области спектра [7]; (4) сильный избыток мягкого рентгеновского излучения и высокая амплитуда быстрой изменчивости рентгеновского излучения (X-ray) [6,8]; (5) сильное инфракрасное излучение, указывающее на активное звездообразование [9].

СМЧД в АЯГ характеризуются двумя основными параметрами, а именно массой и спином (безразмерный угловой момент). Спин является очень важным параметром, потому что, по современным представлениям, радиационная эффективность аккреционного диска сильно зависит от величины спина [10–13]. В наших предыдущих работах мы в основном исследовали АЯГ в Сейфертовских галактиках 1 типа; таким образом, в этой работе мы решили изучить АЯГ в галактиках NLS1 и сравнить эти два типа АЯГ.

$$\begin{split} \varepsilon(a) &= 1 - \frac{R_{\rm ISCO}^{3/2} - 2R_{\rm ISCO}^{1/2} + |a|}{R_{\rm ISCO}^{3/4} (R_{\rm ISCO}^{3/2} - 3R_{\rm ISCO}^{1/2} + 2|a|)^{1/2}} \\ R_{\rm ISCO}(a) &= 3 + Z_2 \pm ((3 - Z_1)(3 + Z_1 + 2Z_2))^{1/2}, \\ Z_1 &= 1 + (1 - a^2)^{1/3} ((1 + a)^{1/3} + (1 - a)^{1/3}), \\ Z_2 &= (3a^2 + Z_1^2)^{1/2}. \end{split}$$

В выражении для $R_{ISCO}(a)$ знак «-» используется для обозначения проградного вращения ($a \ge 0$), а знак «+» указывает на ретроградное вращение (a < 0).

Анализ объектов на основе полученных оценок спинов

Используя оценки значений спина, мы рассмотрели статистические свойства выборки объектов, рассмотренных в данной работе, и сравнили их со значениями, полученными в наших предыдущих работах. На рис. 5 показано распределение болометрической светимости для обеих выборок. Видно, что обе выборки объектов имеют нормальное распределение; однако для выборки, рассмотренной в данной работе, пик смещается влево на порядок. Это можно объяснить тем фактом, что мы оценили спины только для тех объектов, у которых коэффициент Эддингтона $l_E < 0,3$. На рис. 6 показано распределение массы СМЧД для обеих выборок. В целом, распределения имеют аналогичный вид. На рис. 7 показаны распределения космологических красных смещений для обеих выборок. Эти распределения снова имеют аналогичный вид, но пик смещен в сторону более близких объектов. Это происходит потому что выборка объектов, рассмотренных в данной работе, состоит преимущественно из более слабых объектов, которые мы обычно можем обнаружить только на более близких расстояниях (эффект селекции).

Анализ исходных данных

Мы взяли исходные данные из работы Zhou et al. [14]. Этот каталог состоит из 2011 галактик типа NLS1; из них 2005 объектов имеют все необходимые данные для наших расчетов. К таким данным относятся: L_{5100} — светимость на 5100 Å, FWHM(H_{β}) — полная ширина на полувысоте спектральной линии H_{β} (определяющей скорость вращения аккреционного диска АЯГ), и z — космологическое красное смещение.

На рисунках 1–3 показаны гистограммы с распределениями L_{5100} , FWHM(H_{β}) и космологического красного смещения z. Видно, что светимость имеет логарифмически нормальное распределение с пиком при log(L_{5100} [эрг/с]) ≈ 44 . Относительно FWHM(H_{β}) видно, что правая сторона распределения резко обрывается на log(FWHM(H_{β})[км/с]) ≈ 3.4 . Это может объясняется тем, что АЯГ в объектах типа NLS1 характеризуются меньшей скоростью вращения аккреционного диска по сравнению, например, с сейфертовскими галактиками типа 1, а также способом обработки данных при создании каталога [15]. Распределение космологического красного смещения может быть вызвано пространственным распределением объектов (для близких объектов) и эффектом селекции (для удаленных объектов). На рис. 4 представлена зависимость светимости на 5100 Å L_{5100} от FWHM(H_{β}). Коэффициент корреляции Спирмена для этого параметра составляет 0,28, а значимость корреляции на уровне 0,05. Таким образом, видна слабая корреляция между параметрами, как и ожидалось.

Оценка величины спина

Спин (безразмерный угловой момент) СМЧД определяется как: $a = cJ/GM_{BH}^2$ где J — угловой момент, M_{BH} — масса черной дыры, с — скорость света. Также можно оценить спин через радиационную эффективность: $\varepsilon = L_{bol}/\dot{M}c^2$

где L_{bol} — болометрической светимости АЯГ и М – скорость аккреции.

Существует несколько моделей, связывающих радиационную эффективность с физическими параметрами АЯГ, которые можно получить из наблюдений. В нашей предыдущей работе мы пришли к выводу, что модель Du et al. [18] дает наиболее последовательные результаты; поэтому мы решили использовать именно эту модель в данной работе. Согласно Du et al. [18]:

$$\varepsilon(a) = 0.105 \left(\frac{L_{bol}}{10^{46} \, \text{erg/s}} \right) \left(\frac{L_{5100}}{10^{45} \, \text{erg/s}} \right)^{-1.5} M_8 \mu^{1.5}$$

 $M_8 = M_{BH} / (10^8 M_{\odot})$
 $u = \cos i$ і-угол между лучом зрения и аккреционным диском

Поскольку углы для большинства объектов неизвестны и у нас нет оснований предполагать наличие какого-либо предпочтительного направления в ориентации галактик, общепринятым методом является допущение некоторого среднего угла. Так как статистических данных о предпочтительном угле для NLS1 недостаточно, мы принимаем i = 45, $\mu = 0,7$. Конечно, этот метод не совершенен, но в его пользу есть ряд аргументов. Например, существующие угловые измерения (в том числе выполненные с участием авторов настоящей работы [22]) показывают, что для большинства

log(z) Рисунок 7. Распределение космологического красного смещения для двух выборок

Рисунок 8. Распределение оценок спина а

На рис. 8 показано распределение оценок значений спина для 474 объектов. Распределение имеет ярко выраженный пик при 0,25 < a < 0,5 и обрывается при a > 0,75. Это сильно отличается от распределения объектов типа Сейферт 1 (см. рис. 9), которое обычно имеет пик при 0,75 < a < 1,0, кроме того, до 50% объектов имеют значения спина a > 0,75 [19,21,22]. Этот результат в целом согласуется с результатами Liu et al. [33], полученными с помощью рентгеновских наблюдений. Интересно сравнить наши результаты с распределением спинов, полученными в работе Чен и другие. [34] (см. рис. 6 в их работе) для различных типов активных галактик. Видно, что наше распределение значений спина для NLS1 очень похоже на распределение для радиогалактик, что может указывать на тесную связь этих двух типов объектов [35,36]. Кроме того, видно, что наше распределение спинов для галактик типа Сейферт 1 напоминает распределение для радиоквазаров с плоским спектром (FSRQ), что, в свою очередь, может означать, что галактики Сейферт 1 и FSRQ связаны (например, это может означать, что это объекты одного и того же типа, наблюдаемые с разных сторон). На рис. 10 представлена зависимость расчетных значений спина от болометрической светимости L_{bol}.

Заключение

В этой работе мы оценили значения спинов сверхмассивных черных дыр в АЯГ для 474 галактик NLS1, предполагая угол наклона между лучом зрения и осью аккреционного диска равным 45 градусам. Распределение оценок значений спина существенно отличается от распределения спинов галактик типа Сейферт 1. В среднем значения спина меньше. Распределение имеет пик при 0,25 < a < 0,5, и отсутствуют объекты со спинами а > 0,75. Это в целом согласуется с результатами Liu et al. [33]. Наше распределение значений спина для NLS1 очень похожи на распределение спинов для радиогалактик из Chen et al. [34], что может свидетельствовать о том, что эти два типа объектов тесно связаны [35,36]. Кроме того, видно, что наше распределение спинов для сейфертовских галактик типа 1 в нашей предыдущей работе напоминают распределение из Chen et al. [34] для радиоквазаров с плоским спектром (FSRQ), что, в свою очередь, может означать, что галактики Сейферт 1 и FSRQ связаны (например, это может означать, что это объекты одного типа, наблюдаемые с разных направлений). Зависимости спина от болометрической светимости и массы СМЧД сильно отличается от случая Sy1. В частности, зависимости спина от этих параметров в два-три раза сильнее, что могло бы означать, что на ранних стадиях эволюции тип NLS1 либо имел низкую скорость аккреции, либо хаотическую аккрецию, а на более поздних стадиях - стандартную дисковую аккрецию, которая очень эффективно увеличивает значение спина.

галактик типа Сейферт 1 (включая NLS1) они обычно колеблются от 20 до 60 градусов, а для заметного количества объектов угол близок к 45 градусам (см., например, Afanasiev et al. [22], Marin [23]).

В наших расчетах мы также используем отношение Эддингтона $L_E = L_{bol}/L_{edd}$, где $L_{Edd} = 1.3 \cdot 10^{38} M_{BH}/M_{sun}$ — эддингтоновская светимость. Чтобы получить болометрическую светимость L_{bol} из L_{5100} , нам нужно использовать болометрическую поправку. Разные авторы предоставляют разные болометрические поправки, которые могут отличаться в два-три раза [24–28]. Мы протестировали несколько различных методов болометрической поправки, и для согласованности решили использовать тот же метод, который мы использовали в Piotrovich et al. [21], а именно, подход Richards et al. [24]: $L_{bol} = L_{5100} \times 10.3$.

Мы оценили массы сверхмассивных черных дыр по методу Вестергаарда и Петерсона [29]:

 $\log(M_{\rm BH}) \approx \log\left(\left[\frac{FWHM(H\beta)}{1000 \,\rm km/s}\right]^2 \left[\frac{L_{5100}}{10^{44} \,\rm erg/s}\right]^{0.5}\right) + 6.91.$

Радиационная эффективность для этого типа объектов должна удовлетворять условию $0,039 < \varepsilon(a) < 0,324$ [30]. Кроме того, поскольку метод из работы Du et al. [18] использует аккрецию диска Шакуры–Сюняева [31] коэффициент Эддингтона должен быть в пределах $0,01 \le l_E \le 0,3$ [32]. Таким образом, из 2005 исходных объектов 474 объекта удовлетворяют этим условиям. Спин определялся численно с использованием выражения из Bardeen et al. [10]:

Работа опубликована: M. Piotrovich, S. Buliga and T. Natsvlishvili Universe 2023, 9, 175. https://doi.org/10.3390/universe9040175

1. Netzer, H. Annu. Rev. Astron. Astrophys. 2015, 53, 365–408. 2. Robson, I. Active Galactic Nuclei; Wiley: New York, NY, USA, 1996. 3. Antonucci, R. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. 4. Osterbrock, D.E.; Pogge, R.W. Astrophys. J. 1985, 297, 166–176. 5. Goodrich, R.W. Astrophys. J. 1989, 342, 224. 4674-4710. 6. Leighly, K.M.. Astrophys. J. Suppl. 1999, 125, 317–348. 7. Mathur, S. Mon. Not. R. Astron. Soc. 2000,314, L17–L20. 8. Boller, T.; Brandt, W.N.; Fink, H. Astron. Astrophys. 1996, 305, 53. 9. Moran, E.C.; Halpern, J.P.; Helfand, D.J. Astrophys. J.Suppl. 1996, 106, 341. 10. Bardeen, J.M.; Press, W.H.; Teukolsky, S.A Astrophys. J. 1972, 178, 347–370. 11. Novikov, I.D.; Thorne, K.S. Astrophysics of black holes. In Black Holes (Les Astres Occlus) Dewitt, C., Dewitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 343-450. 12. Krolik, J.H. In Proceedings of the 2007 STScI Spring Symposium on Black Holes, Baltimore, MD, USA, 23–26 April 2007; pp. 309–321. 13. Krolik, J.H.; Hawley, J.F.; Hirose, S. In Revista Mexicana de Astronomia y Astrofisica; Revista Mexicana de Astronomia y Astrofísica Conference Series; Instituto de Astronomía Distrito Federal: Ciudad de México, Mexico, 2007; Volume 27, pp. 1–7. 14. Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y. VizieR Online Data Catalog: Narrow line Seyfert 1 galaxies from SDSS-DR3 (Zhou+, 2006). VizieR Online Data Cat. 2017. 15. Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y. The Sample. Astrophys. J. Suppl. 2006, 166, 128–153. 16. Davis, S.W.; Laor, A. Astrophys. J. 2011, 728, 98. 17. Raimundo, S.I.; Fabian, A.C.; Vasudevan, R.V.; Gandhi, P.; Wu, J. Mon. Not. R. Astron. Soc. 2012, 419, 2529–2544.

Литература

18. Du, P.; Hu, C.; Lu, K.X.; Wang, F.; Qiu, J.; Li, Y.R.; Bai, J.M.; Kaspi, S.; Netzer, H.; Wang, J.M.; et al. Astrophys. J. 2014, 782, 45. 19. Trakhtenbrot, B. Astrophys. J. Lett. 2014, 789, L9. 20. Lawther, D.; Vestergaard, M.; Raimundo, S.; Grupe, D. Mon. Not. R. Astron. Soc. 2017, 467, 21. Piotrovich, M.Y.; Buliga, S.D.; Natsvlishvili, T.M. Astron. Nachr. 2022, 343, e10020. 22. Afanasiev, V.L.; Gnedin, Y.N.; Piotrovich, M.Y.; Natsvlishvili, T.M.; Buliga, S.D. Astron. Lett. 2018, 44, 362–369. 23. Marin, F. Mon. Not. R. Astron. Soc. 2016, 460, 3679-3705. 24. Richards, G.T.; Lacy, M.; Storrie-Lombardi, L.J.; Hall, P.B.; Gallagher, S.C.; Hines, D.C.; Fan, X.; Papovich, C.; Vanden Berk, D.E.; Trammell, G.B.; et al. Astrophys. J. Suppl. 2006, 166, 470–497. 25. Hopkins, P.F.; Richards, G.T.; Hernquist, L. Astrophys. J. 2007, 654, 731–753. 26. Cheng, H.; Yuan, W.; Liu, H.Y.; Breeveld, A.A.; Jin, C.; Liu, B. Mon. Not. R. Astron. Soc. 2019, 487, 3884-3903. 27. Netzer, H. Mon. Not. R. Astron. Soc. 2019, 488, 5185-5191. 28. Duras, F.; Bongiorno, A.; Ricci, F. et al. Astron. Astrophys. 2020, 636, A73. 29. Vestergaard, M.; Peterson, B.M. Astrophys. J. 2006, 641, 689–709. 30. Thorne, K.S. Astrophys. J. 1974, 191, 507–520. 31. Shakura, N.I.; Sunyaev, R.A. Astron. Astrophys. 1973, 24, 337–355. 32. Netzer, H.; Trakhtenbrot, B. Mon. Not. R. Astron. Soc. 2014, 438, 672-679. 33. Liu, Z.; Yuan, W.; Lu, Y.; Zhou, X. Mon. Not. R. Astron. Soc. 2015, 447, 517–529. 34. Chen, Y.; Gu, Q.; Fan, J.; Yu, X.; Ding, N.; Xiong, D.; Guo, X. Astrophys. J. 2023, 944, 157. 35. Yuan, W.; Zhou, H.Y.; Komossa, S.; Dong, X.B.; Wang, T.G.; Lu, H.L.; Bai, J.M. Astrophys. J. 2008, 685, 801-827. 36. Berton, M.; Congiu, E.; Järvelä, E et al. Astron. Astrophys. 2018, 614, A87.